PSYb1170 Statistická analýza dat

Fakulta sociálních studií
jaro 2020
Rozsah
1/1/0. 5 kr. Ukončení: zk.
Vyučující
Mgr. Hynek Cígler, Ph.D. (přednášející)
doc. Mgr. Stanislav Ježek, Ph.D. (přednášející)
Mgr. Vít Gabrhel (cvičící)
Mgr. Adam Ťápal, M.A. (cvičící)
Garance
doc. Mgr. Stanislav Ježek, Ph.D.
Katedra psychologie - Fakulta sociálních studií
Kontaktní osoba: doc. Mgr. Stanislav Ježek, Ph.D.
Dodavatelské pracoviště: Katedra psychologie - Fakulta sociálních studií
Předpoklady
! PSY117 Statistická analýza dat
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory
předmět má 18 mateřských oborů, zobrazit
Cíle předmětu
Cílem kurzu je seznámit studenty se základy statistiky používané v psychologickém výzkumu. Studenti získají porozumění základním prvkům statistiky a dovednost je aktivně i pasivně používat. Studenti získají dovednost připravit data pro statistické zpracování, spočítat základní statistiky, otestovat běžné typy hypotéz. Kurz klade důraz i na komunikaci, tj. slovní popis výsledků i schopnost porozumět takto popsaným výsledkům v empirických kvantitativních studiích. V rámci kurzu jsou studenti seznamováni paralelně s českou i anglickou terminologií, aby byli po skončení kurzu schopni dále studovat a používat internetové zdroje.
Výstupy z učení
Student bude po absolvování předmětu schopen: - uspořádat data do datové matice ve formátu použitelném napříč; různými statistickými programy; spočítat základní popisné statistiky popisující rozložení jednotlivých proměnných a vztahy mezi proměnnými; vytvořit základní zobrazení rozložení jednotlivých proměnných a vztahů mezi proměnnými; vytvořit intervaly spolehlivosti pro základní popisné statistiky; otestovat elementární hypotézy; využít lineární regresní model s jedním prediktorem; s pomocí podmíněných pravděpodobností počítat ukazatele diagnostické úspěšnosti testů.
Osnova
  • 1. Proměnné. Data, proměnné, úrovně měření, kvalita měření, organizace dat, kontrola dat, datová matice a kódování.
  • 2. Zobrazování dat, četnosti, distribuce. Tabelace dat, šíře intervalů, minimum, maximum, odlehlá hodnota, absolutní a relativní četnosti, kumulativní absolutní a relativní četnosti, rozložení četností, tvary rozložení, normální (Gaussovo) rozložení, velikosti oblastí pod křivkou normálního rozložení, Poissonovo rozložení, graf absolutních a relativních četností, sloupcový graf, histogram.
  • 3. Míry centrální tendence a variability. Modus, medián, průměr, vážený průměr, vhodnost použití různých měr centrální tendence, (variační) rozpětí, kvartilové rozpětí, směrodatná odchylka, rozptyl, z-skóry a další standardní skóry, percentily, šikmost, špičatost, krabicový graf s anténami.
  • 4. Vztahy mezi proměnnými. Korelace – Pearsonův, Spearmannův, Kendallův koeficient a jejich vlastnosti. Koeficient determinace, kovariance. Kontingenční tabulka, marginální četnosti. Lineární vztah, monotónní vztah, pozitivní a negativní vztah. Těsnost vztahu. Bodový graf. Parciální korelace.
  • 5. Lineární regrese. Statistická predikce, lineární vs. nelineární regrese, odhad, modelování, reziduum, prediktor, zdroje variability, stanovení regresní přímky metodou nejmenších čtverců, regresní rozptyl a reziduální rozptyl, koeficient determinace jako ukazatel úspěšnosti regrese, homoskedascita.
  • 6. Pravděpodobnost. Pojetí pravděpodobnosti, počítání s pravděpodobnostmi, náhodné jevy, podmíněné pravděpodobnosti, Bayesův teorém, normální rozdělení a další běžná rozložení.
  • 7. Statistická indukce, intervalové odhady. Vzorek(výběr), statistiky vs. parametry, výběrová rozložení, centrální limitní teorém, směrodatná chyba (průměru), výběrové rozložení průměru, relativní četnosti, rozptylu, bodové vs. intervalové odhady.
  • 8. Testování hypotéz. Statistická(nulová) hypotéza, výzkumná (alternativní) hypotéza, jednostranná vs. oboustranná hypotéza(test); Bayesovský přístup k testování hypotéz vs. Fisherovský a Pearson-Neymanovský (tradiční) přístup, úroveň(hladina) statistické významnosti, chyba I. a II. typu a jejich pravděpodobnost, (statistická) síla testu, jednovýběrový t-test, dvouvýběrový t-test (pro nezávislé výběry), párový t-test (z-test), testování korelačního koeficientu, velikost efektu, Cohenovo d.
  • 9. Testy pro nominální a ordinální proměnné.Parametrické vs. neparametrické testy, znaménkový test, test relativních četností, test dobré shody, závislost kategoriálních proměnných, Wilcoxonovy testy, Mann-Whitney U.
  • 10. Analýza rozptylu. Problém s prováděním většího počtu testů, rybaření v datech, Bonferroniho korekce, princip analýzy rozptylu, rozptyl mezi skupinami , rozptyl uvnitř skupin, statistika F, analýza rozptylu s jedním faktorem (one-way), předpoklady analýzy rozptylu, post-hoc testy, velikost účinku.
Literatura
  • HOWELL, David C. Statistical methods for psychology. 8th ed. Belmont, CA: Wadsworth Cengage Learning, 2013. xix, 770. ISBN 9781111840853. info
  • HOWITT, Dennis a Duncan CRAMER. Introduction to statistics in psychology. 5th ed. New York: Pearson, 2011. xlvi, 624. ISBN 9780273734307. info
  • HENDL, Jan. Přehled statistických metod zpracování dat :analýza a metaanalýza dat. Vyd. 1. Praha: Portál, 2004. 583 s. ISBN 8071788201. info
Výukové metody
přednáška, demonstrace řešení problémů, skupinová diskuze, kritické čtení a psaní recenze, domácí cvičení, online diskuze
Metody hodnocení
3 průběžné testy (1/3 celkového hodnocení), 1 seminární práce (1/9 celkového hodnocení), závěrečná zkouška (5/9 celkového hodnocení)
Navazující předměty
Informace učitele
http://www.fss.muni.cz/psych/studium.html


Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Cvičení je děleno na tři skupiny.
Nachází se v prerekvizitách jiných předmětů

  • Permalink: https://is.muni.cz/predmet/fss/jaro2020/PSYb1170