C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2023
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2021
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2017
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2015
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2012
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 13 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2011
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 13 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2010
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející), Ing. Jiří Brus, Dr. (zástupce)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 13 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2009
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 15 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- http://www.imc.cas.cz/nmr/lect.html
Výuka probíhá blokově. - Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2008
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Metody hodnocení
- zkouška ústní
- Informace učitele
- http://www.imc.cas.cz/nmr/lect.html
Výuka probíhá blokově. - Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2006
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Metody hodnocení
- zkouška ústní
- Informace učitele
- http://www.imc.cas.cz/nmr/cz/lect.html
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2005
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Ústav biochemie – Chemická sekce – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Metody hodnocení
- zkouška ústní
- Informace učitele
- http://www.imc.cas.cz/nmr/headcz.html
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá blokově.
C8951 NMR - Strukturní analýza
Přírodovědecká fakultajaro 2000
- Rozsah
- 2/0/0. 3 kr. Ukončení: k.
- Vyučující
- prof. RNDr. Radek Marek, Ph.D. (přednášející)
- Garance
- prof. RNDr. Radek Marek, Ph.D.
Chemická sekce – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 17 mateřských oborů, zobrazit
- Osnova
- Metody magnetické rezonance, chemický posun, interakční konstanta, FT-NMR, relaxace jader, selektivní excitace, potlačení signálu rozpouštědla, konstrukce spektrometrů, magnety, sondy, kyvety, editační techniky (APT), přenos polarizace (INEPT, DEPT), NMR spektroskopie ve více dimenzích, homonukleární korelace chemických posunů (COSY, LR-COSY, TOCSY), heteronukleární korelace chemických posunů (HETCOR, COLOC), měření J konstant, dipolární interakce (selektivní NOE, NOESY), vícekvantová spektroskopie (MQF-COSY, INADEQUATE), NMR spektroskopie jiných jader než 1H a 13C (15N, 31P, 19F, 77Se, 195Pt) inverzní experimenty (HMQC, HSQC, HMBC, HSQC-TOCSY), gradientní spektroskopie, J konstanty a dihedrální úhly, NOE a meziatomové vzdálenosti, logická struktura analýzy, citlivost experimentů, příklady a interpretace spekter.
- Literatura
- RAHMAN, Atta-ur-. Solving problems with NMR spectroscopy. Edited by Muhammad Iqbal Choudhary. San Diego: Academic Press, 1995, xvi, 430. ISBN 0120663201. info
- RAHMAN, Atta-ur-. One and Two Dimensional NMR Spectroscopy. 1. vyd. Amsterdam: Elsevier Science Publishers B.V., 1989, 578 s. ISBN 0444873163. info
- BREITMAIER, Eberhard. Structure elucidation by NMR in organic chemistry : a practical guide. Translated by Julia Wade. Chichester: John Wiley & Sons, 1993, 265 s. ISBN 0471933813. info
- BRAUN, Siegmar, Hans - Otto KALINOWSKI a Stefan BERGER. 150 and more basic NMR experiments :a practical course. 2nd exp. ed. Weinheim: Wiley-VCH, 1998, 595 s. ISBN 3-527-29512-7. info
- BRAUN, Siegmar, Hans - Otto KALINOWSKI a Stefan BERGER. 100 and more basic NMR experiments :a practical course. Weinheim: VCH Verlagsgesellschaft, 1996, xii, 418 s. ISBN 3-527-29091-5. info
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2024
Předmět se v období podzim 2024 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2022
Předmět se v období podzim 2022 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2020
Předmět se v období podzim 2020 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Studijní materiály
Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2019
Předmět se v období podzim 2019 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2018
Předmět se v období podzim 2018 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem kurzu je přiblížit posluchačům základní principy NMR spektroskopie pevného stavu. V rámci kurzu budou představeny a detailně diskutovány současné trendy NMR spektroskopie pevného stavu poskytující přesná data pro charakterizaci struktury a dynamiky. Nedávný rozvoj metodologie a zařízení umožnil významné zvýšení citlivosti a selektivity NMR v tuhé fázi. Student bude seznámen se základními principy tradičních i nedávno vyvinutých "průměrovacích" technik a vícedimenzionálních korelačních a separačních experimentů stejně jako NMR kvadrupolárních jader.
- Výstupy z učení
- Student bude po absolvování předmětu schopen:
- využít základní 1D metody NMR spektroskopie při charakterizaci struktury molekul v pevném stavu;
- aplikovat metody NMR spektroskopie ke stanovení supramolekulárního uspořádání pevných materiálů;
- analyzovat jednoduchá 1D NMR spektra pevných látek;
- vybrat vhodné NMR experimenty pro charakterizaci farmaceutických substancí, polymorfů a hydrátů. - Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2016
Předmět se v období podzim 2016 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2014
Předmět se v období podzim 2014 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2013
Předmět se v období podzim 2013 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, Dr. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Dodavatelské pracoviště: Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 11 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2007
Předmět se v období podzim 2007 nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Metody hodnocení
- zkouška ústní
- Informace učitele
- http://www.imc.cas.cz/nmr/lect.html
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2011 - akreditace
Údaje z období podzim 2011 - akreditace se nezveřejňují
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející), Ing. Jiří Brus, Dr. (zástupce)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 13 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- Výuka probíhá blokově.
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2010 - akreditace
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející)
Mgr. Kateřina Bouzková, Ph.D. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 14 mateřských oborů, zobrazit
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Výukové metody
- Přednášky
- Metody hodnocení
- zkouška ústní
- Informace učitele
- http://www.imc.cas.cz/nmr/lect.html
Výuka probíhá blokově. - Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.
Přírodovědecká fakultapodzim 2007 - akreditace
Předmět se v období podzim 2007 - akreditace nevypisuje.
- Rozsah
- 1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
- Vyučující
- Ing. Jiří Brus, PhD. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející) - Garance
- prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta - Předpoklady
- základy fyziky, chemie a NMR spektroskopie v roztoku
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
- Osnova
- 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
- Literatura
- Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
- Metody hodnocení
- zkouška ústní
- Informace učitele
- http://www.imc.cas.cz/nmr/lect.html
- Další komentáře
- Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
- Statistika zápisu (nejnovější)