C8951 NMR spektroskopie pevného stavu - základní principy a aplikace v chemii.

Přírodovědecká fakulta
podzim 2006
Rozsah
1/0/0. 1 kr. (příf plus uk plus > 4). Doporučované ukončení: zk. Jiná možná ukončení: k.
Vyučující
Ing. Jiří Brus, PhD. (přednášející)
prof. RNDr. Radek Marek, Ph.D. (přednášející)
Garance
prof. RNDr. Radek Marek, Ph.D.
Národní centrum pro výzkum biomolekul – Přírodovědecká fakulta
Předpoklady
základy fyziky, chemie a NMR spektroskopie v roztoku
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Dvanáct lekcí přibližuje posluchačům nejenom základní principy NMR spektroskopie pevného stavu, ale především současné trendy, které umožňují detailní posouzení struktury a dynamiky látek v tuhém stavu. Nedávný technický a metodický rozvoj vedl k navržení řady nových experimentálních postupů, které vedou k odstranění anizotropie jaderných interakcí a podstatnému zvýšení rozlišení NMR spekter. Tato spektra jsou pak mnohdy svou kvalitou srovnatelná s NMR spektry roztoků a kapalin. Základním principům těchto technik jsou věnovány úvodní přednášky. Největší prostor je však věnován více-dimenzionálním korelačním a separačním technikám, které nevyžadují izotopické obohacení studovaného materiálu, a které v některých případech umožňují přesný popis molekulární struktury, konformace a pohyblivosti jednotlivých strukturních jednotek. Stranou však nezůstávají ani experimentální techniky umožňující popis globální struktury izotopicky obohacených polypeptidů a proteinů. Závěrečné přednášky jsou pak věnovány problematice studia kvadrupolárních jader se spinem větším něž a technickým (experimentálním) podmínkám, jejichž splnění je nezbytně nutné pro kvalitní provedení NMR experimentu v tuhé fázi.
Osnova
  • 1. Úvod do NMR pevné fáze: Základní přehled jaderných (anizotropních) interakcí s magnetickým polem a jejich důsledek na vzhled (rozšíření) NMR spekter. Základní principy rušení anizotropních jaderných interakcí (rotace vzorku pod magickým úhlem MAS, dipolární dekapling). Rozdíly a podobnosti NMR spekter roztoků a tuhých látek (homogenní a nehomogenní rozšíření signálů prvek neuspořádání). Rotace vzorku tření povrchu kyvety se vzduchem vzrůst teploty. 2. Detailní rozbor anizotropie jaderných interakcí techniky rušení jaderných interakcí: Detailní popis jaderných interakcí: anizotropie chemického posunu (CSA), dipol-dipolové interakce (přímé přes prostor), kvadrupolární interakce. Rozbor technik rušení jaderných interakcí: rotace vzorku pod magickým úhlem (MAS), heteronukleární dipolární decoupling (cw, TPPM, XiX), homonukleární dipolární decoupling (WHH-4, BR-24, FSLG, PMLG), dvojitá rotace (DOR, DAS). 3. Techniky přenosu polarizace: Heteronukleární (1H-13C, 1H-X) přenos polarizace; zvýšení citlivosti měření pomocí cross-polarizace (CP) dynamika přenosu polarizace; Hartmann-Hahnova podmínka vliv frekvence MAS na citlivost a nastavení parametrů měření. Problematika CP jader se spinem větším než . Homonukleární přenos polarizace spinová difuze 1H-1H (vhodná sonda k posouzení velikosti částic v heterogenních systémech). 4. Techniky editace jedno-dimenzionálních spekter: Možnosti potlačení rotačních signálů (TOSS, SELTICS); potlačení signálů uhlíků s přímo-vázanými protony v důsledku rychlé ztráty 13C koherence (NQS); editační techniky založené na vlivu různé velikosti 1H-13C heteronukleárních dipolárních interakcí ve skupinách C, CH, CH2, a CH3 při cross-polarizaci (CPPI); vliv pohyblivosti funkčních skupin a segmentů; editační techniky založené na velikosti a vývoji nepřímé J spin-spinové interakce (SoS-APT); různé možnosti manipulace se spinovým systémem (vývoj jedno-kvantové a více-kvantové koherence). Aplikace na jednoduchých i komplikovaných spinových systémech (např. Gly, Ala, simvastatin). 5. Separace širokých čar struktura vs. segmentální dynamika: Jednoduchá separace 1H-1H dipolárních interakcí podle 13C chemického posunu kvalitativní posouzení segmentální dynamiky; zavedení periody pro spinovou difuzi (stanovení velikosti částic v heterogenních systémech); určování pozice molekul vody. Separace heteronukleárních 1H-13C dipolárních interakcí podle 13C chemického posunu kvantitativní posouzení segmentální dynamiky amplituda reorientace funkční skupiny. Aplikace na polymerních směsích (polyethylenoxid-polykarbonát), sítích (polyimid-polydimethylsiloxan), polypeptidech, nanokompozitech a anorganických materiálech. 6. Heteronukleární 1H-X korelační experimenty: Přímé korelace přes prostor využití dipol-dipolových interakcí; jedno-vazebné korelace; identifikace vzdálených spinových párů; možnost měření meziatomových vzdáleností (3D HETCOR); porovnání selektivity a citlivosti s korelačními experimenty využívající nepřímé spin-spinové interakce (1H-13C HMQS-J-MAS). Možnosti inverzní detekce a gradientového výběru koherencí. Aplikace na středně velkých spinových systémech simvastatin. 7. Homonukleární 1H-1H korelační experimenty: Proč je tak komplikované provést experiment COSY v pevné fázi, když v roztoku je tím nejsnadnějším a nejzákladnějším korelačním experimentem? Problém relativně malého spektrálního rozlišení. Spinová difuze během směšovací periody místo vývoje J interakčních konstant posouzení homogenity či mísitelnosti směsí. Určení velikosti částic, ale i meziatomových 1H-1H vzdáleností. Zvýšení spektrálního rozlišení v 3D experimentu 1H-1H-13C. Aplikace na polymerních komplexech a polymerních směsích, středně velkých spinových systémech (simvastatin) a malých organických molekulách. 8. Dvou-kvantové 1H-1H korelační techniky - vodíkové vazby a pi-pi interakce Ultra-rychlé rotace vzorku pod magickým úhlem podstatné zvýšení spektrálního rozlišení (vážným omezením je extrémní zvýšení teploty vzorku); princip excitace dvou-kvantové koherence a její následné konverze (back-to-back BABA sekvence). Měření meziatomových 1H-1H vzdáleností. 9. Zvýšení spektrálního rozlišení X-X a X-Y korelace: INADEQUATE v přirozeném izotopickém zastoupení; optimalizace heteronukleárního decouplingu transverse dephasing optimized INADEQUATE; DQF-COSY jednoduchá modifikace symetrické spektrum. Techniky vhodné pro případy úplného izotopického obohacení vzorku: především to je 13C-13C PDSD proton-driven spin diffusion, dále pak dvou-kvantové modifikace užívající C7 a PC7 sekvence. Základní koncept dvojitých cross-polarizací, potlačení zpětného přenosu polarizace do 1H spinového systému Lee-Goldburg decoupling. 10. Techniky sekvenčního přiřazení polypetidů a proteinů, určení struktury: Diskuse základních experimentálních postupů, jež vedou k sekvenčnímu přiřazení signálů a následnému měření meziatomových vzdáleností, případně i torzních úhlů v proteinech a peptidech. 2D a 3D techniky pro určení intra-reziduální spinové konektivity C-Calpha-Cbeta a N-Calpha-Cbeta a inter-reziduální konektivity Calpha-Cbeta a N-Calpha-Cbeta. Volba směšovací periody. Využití přístupů běžných v NMR roztoků (NOE). Příprava vzorku. 11. Kvadrupolární jádra: Kvadrupolární spektra rozšíření spekter druhého řádu; multi-kvantové dvou-dimenzionální techniky vedoucí k částečné separaci kvadrupolové interakce a zvýšení spektrálního rozlišení; použití z-filtru; měření plného echa a další modifikace (např. FAM); vliv frekvence MAS; vliv intenzity magnetického pole a vliv intenzity excitačních polí na kvalitu výsledných 2D spekter. Korelační experimenty zahrnující kvadrupolová jádra (1H-27Al, 29Si-27Al). 12. Technické aspekty úspěšného provedení NMR experimentu v pevné fázi: Konstrukce sondy - teplotní rozsahy a kalibrace teplot; dvou-rezonanční sondy optimalizace (wobb); tří-rezonanční sondy vyměnitelný insert; ladění magického úhlu; optimalizace homogenity B0 pole - shimming; výkony excitačních a dekaplovacích polí minimální opakovací prodlevy; lineární zesilovače; základní specifikace prodlevy, pulsy, fáze; typy rotorů omezení a výhody.
Literatura
  • Melinda J. Duer, Solid-state NMR Spectroscopy: Principles and Applications. Blackwell Science, Oxford, 2002, ISBN 0-632-05351-8.
Metody hodnocení
zkouška ústní
Informace učitele
http://www.imc.cas.cz/nmr/cz/lect.html
Další komentáře
Předmět je vyučován jednou za dva roky.
Poznámka k periodicitě výuky: od 2006/2007.
Výuka probíhá blokově.
Předmět je zařazen také v obdobích jaro 2000, podzim 2010 - akreditace, podzim 2005, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2015, podzim 2017, podzim 2021, podzim 2023.