PřF:M7070 Mathematical Statistics - Informace o předmětu
M7070 Mathematical Statistics
Přírodovědecká fakultapodzim 2025
Předmět se v období podzim 2025 nevypisuje.
- Rozsah
- 0/2. 2 kr. Ukončení: z.
Vyučováno kontaktně - Vyučující
- Mgr. Andrea Kraus, M.Sc., Ph.D. (přednášející)
doc. Mgr. David Kraus, Ph.D. (přednášející) - Garance
- doc. Mgr. David Kraus, Ph.D.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Předpoklady
- Knowledge of calculus and linear algebra at the level of introductory courses of the first two years. Knowledge of probability and statistics at the level of courses M3121 and M4122.
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Cíle předmětu
- The course offers a more detailed view of key concepts of mathematical statistics, e.g., a general concept of random variables, expectations, conditioning, (multivariate) normal distribution, and asymptotics. These concepts facilitate the understanding of the reasons behind validity and properties of the majority of statistical methods. A deep understanding of these concepts enables the students to assess the validity of a given statistical method and modify it, if needed, for multifaceted practice. The course is suitable for students with a deeper interest in mathematical statistics, including those who are planning or beginning doctoral studies in statistics and related fields. It can also serve as a (rather ambitious) way of gaining an overview for students preparing themselves for final exams.
- Výstupy z učení
- After the course, the students understand general concepts and properties of random variables, expectations, conditioning, (multivariate) normal distribution, asymptotics and the maximum likelihood method. A deep understanding of these concepts enables the students to assess the validity of a given statistical method and modify it, if needed, for multifaceted practice.
- Osnova
- Random variables.
- Expectation and its properties.
- Conditional expectation, its properties and computation.
- Conditional probability and conditional distribution.
- Multivariate normal distribution.
- Types of convergence of random variables.
- Tools for asymptotic statistics.
- Maximum likelihood, motivation for and use of regularity conditions, asymptotic properties of maximum likelihood estimators, maximum likelihood for confidence regions and hypothesis testing.
- Literatura
- CASELLA, George a Roger L. BERGER. Statistical inference. 2nd ed. Pacific Grove, Calif.: Duxbury, 2002, xxviii, 66. ISBN 8131503941. info
- PANARETOS, Victor M. Statistics for mathematicians : a rigorous first course. Switzerland: Springer International Publishing, 2016, xv, 177. ISBN 9783319283395. info
- POLLARD, David. A user's guide to measure theoretic probability. Cambridge: Cambridge University Press, 2002, xiii, 351. ISBN 0521802423. info
- KALLENBERG, Olav. Foundations of modern probability. 2nd ed. New York: Springer, 2002, xvii, 638. ISBN 0387953132. info
- Výukové metody
- Interactive lectures combined with exercises, where an active participation of students is expected.
- Metody hodnocení
- Assignments
- Vyučovací jazyk
- Angličtina
- Informace učitele
- The course is taught in a hybrid way (on-site sessions can be accessed online).
- Další komentáře
- Výuka probíhá každý týden.
- Permalink: https://is.muni.cz/predmet/sci/podzim2025/M7070