MIN401 Matematika IV

Přírodovědecká fakulta
jaro 2022
Rozsah
4/2/0. 8 kr. Ukončení: zk.
Vyučováno prezenčně.
Vyučující
doc. Mgr. Josef Šilhan, Ph.D. (přednášející)
doc. RNDr. Martin Čadek, CSc. (cvičící)
Mgr. Jan Jurka (cvičící)
doc. Lukáš Vokřínek, PhD. (cvičící)
Garance
prof. RNDr. Jan Slovák, DrSc.
Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Rozvrh
Út 14:00–15:50 M6,01011, St 14:00–15:50 M6,01011
  • Rozvrh seminárních/paralelních skupin:
MIN401/01: Po 12:00–13:50 M3,01023, M. Čadek, L. Vokřínek
Předpoklady
Středoškolská matematika. Elementární algebraické a kombinatorické znalosti a dovednosti (obsah MIN101)
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 18 mateřských oborů, zobrazit
Cíle předmětu
Jde o čtvrtou část čtyřsemestrálního bloku kurzů matematiky. V celém bloku jsou prezentovány základy algebry a teorie čísel, lineární algebry, analýzy, numerických metod, kombinatoriky a teorie pravděpodobnosti a statistiky. V tomto semestru se jedná o základní úlohy teorie čísel a aplikace v šifrování. Ve druhé polovině pak algebraické pojmy a jejich aplikace.
Výstupy z učení
Na konci tohoto kurzu bude student schopen: porozumět a používat metody teorie čísel pro řešení středně obtížných úloh; rozumět tomu, jak jsou výsledky teorie čísel aplikovány v kryptografii; chápat základní výpočetní souvislosti;
rozumět algebraickým pojmům a vysvětlit obecné důsledky a souvislosti;
Osnova
  • 1. Teorie čísel (4 týdny) – dělitelnost - gcd, rozšířený Euklidův algoritmus (Bezout); počítání s velkými čísly (zejména gcd, modulární umocňování); prvočísla - vlastnosti, základní věta aritmetiky, faktorizace, testování prvočíselnosti a složenosti (Rabin-Miller, Mersenneho prvočísla); kongruence - základní vlastnosti, Malá Fermatova věta; Eulerova věta; řešení lineárních kongruencí a jejich soustav; binomické kongruence a primitivní kořeny; diskrétní logaritmus; prvočísla - testování prvočíselnosti až po AKS, hledání dělitele, eliptické křivky (úvod); Legendreův symbol a zákon kvadratické reciprocity; další testy prvočíselnosti;
  • 2. Aplikace teorie čísel (2 týdny) – stručný úvod do asymetrické kryptografie (RSA, DH, ElGamal, DSA, ECC); základy teorie kódování - lineární a polynomiální kódy; aplikace Fourierovy transformace pro rychlé výpočty (např. Schönhage-Strassen)
  • 3. Úvod do algebry (7 týdnů) – Booleovské algebry a svazy, grupy, permutace, symetrie, modulární grupy, homomorfismy a faktorgrupy, akce grupy – Burnsideovo lemma. Okruhy a tělesa, polynomy a jejich kořeny, dělitelnost v oborech integrity, zejména dělitelnost v Z a v okruhu polynomů (nad tělesem), ideály. Konečná tělesa a jejich základní vlastnosti, využití v computer science. Polynomy více proměnných – Gröbnerova báze.
Literatura
    doporučená literatura
  • J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě
  • RILEY, K.F., M.P. HOBSON a S.J. BENCE. Mathematical Methods for Physics and Engineering. second edition. Cambridge: Cambridge University Press, 2004. 1232 s. ISBN 0 521 89067 5. info
  • GILBERT, William J. a W. Keith NICHOLSON. Modern algebra with applications. 2nd ed. Hoboken, N.J.: Wiley-Interscience, 2004. xvii, 330. ISBN 9780471469889. info
Výukové metody
Dvě dvouhodinové přednášky kombinující teorii a řešené příklady. Seminární skupiny zaměřené na zvládnutí početních úloh.
Metody hodnocení
Přednášky kombinující teorii a řešené příklady budou založeny na materiálech k samostatnému studium, které by mělo samotným přednáškám předcházet. Seminární skupiny zaměřené na zvládnutí početních/praktických úloh.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2021, jaro 2023.