FI:IB000 Math. Foundations of CS - Course Information
IB000 Mathematical Foundations of Computer Science
Faculty of InformaticsAutumn 2024
- Extent and Intensity
- 2/2/1. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
In-person direct teaching - Teacher(s)
- prof. RNDr. Petr Hliněný, Ph.D. (lecturer)
Mgr. Jakub Balabán (seminar tutor)
RNDr. Nikola Beneš, Ph.D. (seminar tutor)
Filip Blažek (seminar tutor)
Bc. Samuel Čepela (seminar tutor)
Bc. Roman Dvořák (seminar tutor)
Mgr. Tomáš Foltýnek, Ph.D. (seminar tutor)
Adéla Heroudková (seminar tutor)
Bc. László Iván (seminar tutor)
Mgr. Jan Jedelský (seminar tutor)
RNDr. Martin Jonáš, Ph.D. (seminar tutor)
Bc. Tomáš Jusko (seminar tutor)
Karolína Kovácsová (seminar tutor)
Bc. Filip Kučerák (seminar tutor)
Marek Lukášík (seminar tutor)
doc. RNDr. Martin Maška, Ph.D. (seminar tutor)
doc. RNDr. Pavel Matula, Ph.D. (seminar tutor)
RNDr. Vít Musil, Ph.D. (seminar tutor)
doc. RNDr. Petr Novotný, Ph.D. (seminar tutor)
doc. Mgr. Jan Obdržálek, PhD. (seminar tutor)
Bc. Tai Phat Pham (seminar tutor)
Bc. Dávid Smolka (seminar tutor)
Bc. Adam Straka (seminar tutor)
doc. RNDr. David Svoboda, Ph.D. (seminar tutor)
Bc. Adéla Štěpková (seminar tutor)
Bc. Vojtěch Turland (seminar tutor)
Bc. Lukáš Bátora (assistant)
Bc. Tereza Kinská (assistant)
Bc. Matěj Pavlík (assistant)
Bc. Jindřich Sedláček (assistant)
Pavol Trnavský (assistant)
Bc. Anna Vítová (assistant)
Mgr. Lukáš Másilko (seminar tutor)
Martin Michal Dyttert (assistant) - Guaranteed by
- prof. RNDr. Petr Hliněný, Ph.D.
Department of Computer Science – Faculty of Informatics
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Wed 25. 9. to Wed 11. 12. Wed 8:00–9:50 D3, Wed 25. 9. to Wed 18. 12. Wed 8:00–9:50 D1, Wed 8:00–9:50 D2
- Timetable of Seminar Groups:
IB000/T01: Thu 26. 9. to Fri 20. 12. Thu 8:00–10:45 109, L. Másilko, Nepřihlašuje se. Určeno pro studenty se zdravotním postižením.
IB000/01: Mon 30. 9. to Mon 16. 12. Mon 8:00–9:50 C416, M. Maška
IB000/02: Mon 30. 9. to Mon 16. 12. Mon 8:00–9:50 A320, D. Svoboda
IB000/03: Mon 30. 9. to Mon 16. 12. Mon 10:00–11:50 C416, M. Maška
IB000/04: Mon 30. 9. to Mon 16. 12. Mon 10:00–11:50 B204, T. Pham
IB000/05: Mon 30. 9. to Mon 16. 12. Mon 12:00–13:50 A218, V. Musil
IB000/06: Mon 30. 9. to Mon 16. 12. Mon 12:00–13:50 A320, A. Štěpková
IB000/07: Mon 30. 9. to Mon 16. 12. Mon 14:00–15:50 A217, V. Musil
IB000/08: Mon 30. 9. to Mon 16. 12. Mon 16:00–17:50 B204, N. Beneš
IB000/09: Tue 1. 10. to Tue 17. 12. Tue 8:00–9:50 B410, P. Hliněný
IB000/10: Tue 1. 10. to Tue 17. 12. Tue 8:00–9:50 C416, T. Jusko
IB000/11: Tue 1. 10. to Tue 17. 12. Tue 10:00–11:50 B204, P. Novotný
IB000/12: Tue 1. 10. to Tue 17. 12. Tue 10:00–11:50 A319, F. Kučerák
IB000/13: Tue 1. 10. to Tue 17. 12. Tue 14:00–15:50 B204, S. Čepela
IB000/14: Tue 1. 10. to Tue 17. 12. Tue 14:00–15:50 C416, F. Blažek
IB000/15: Tue 1. 10. to Tue 17. 12. Tue 16:00–17:50 C416, F. Blažek
IB000/16: Wed 2. 10. to Wed 18. 12. Wed 10:00–11:50 C416, P. Matula
IB000/17: Wed 2. 10. to Wed 18. 12. Wed 12:00–13:50 A218, R. Dvořák
IB000/18: Wed 2. 10. to Wed 18. 12. Wed 18:00–19:50 B410, A. Straka
IB000/19: Thu 3. 10. to Thu 19. 12. Thu 8:00–9:50 A218, J. Obdržálek
IB000/20: Thu 3. 10. to Thu 19. 12. Thu 8:00–9:50 B410, L. Iván
IB000/21: Thu 3. 10. to Thu 19. 12. Thu 10:00–11:50 A218, J. Obdržálek
IB000/22: Thu 3. 10. to Thu 19. 12. Thu 10:00–11:50 B410, V. Turland
IB000/23: Thu 3. 10. to Thu 19. 12. Thu 12:00–13:50 B410, M. Jonáš
IB000/24: Thu 3. 10. to Thu 19. 12. Thu 16:00–17:50 C416, D. Smolka
IB000/25: Fri 4. 10. to Fri 20. 12. Fri 8:00–9:50 C416, T. Foltýnek
IB000/26: Fri 4. 10. to Fri 20. 12. Fri 8:00–9:50 B410, P. Hliněný
IB000/27: Fri 4. 10. to Fri 20. 12. Fri 10:00–11:50 C416, M. Lukášík
IB000/28: Fri 4. 10. to Fri 20. 12. Fri 10:00–11:50 B410, A. Heroudková
IB000/29: Fri 4. 10. to Fri 20. 12. Fri 12:00–13:50 C416, J. Jedelský - Prerequisites
- !( IB000ext Math. Foundations of CS || NOW( IB000ext Math. Foundations of CS ))
The course is intended primarily for students of Bachelor's degree programs at the Faculty of Informatics. Students with a minor plan in Informatics enroll in IB000ext. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 39 fields of study the course is directly associated with, display
- Course objectives
- This course is focused on understanding basic mathematical concepts necessary for study of computer science. This is essential for building up a set of basic concepts and formalisms needed for other theoretical courses in computer science. At the end of this course the successful students should: know the basic mathematical notions; understand the logical structure of mathematical statements and mathematical proofs, specially mathematical induction; know discrete mathematical structures such as finite sets, relations, functions, and graph; be able to precisely formulate their claims and relevant proofs; and apply acquired knowledge in other CS courses as well as in practice later on.
- Learning outcomes
- After finishing the course the student will be able to: understand the logical structure of mathematical statements and mathematical proofs, deal with and explain basic structures of discrete mathematics, precisely formulate their claims and relevant proofs.
- Syllabus
- The course focuses on understanding basic mathematical tools:
- Basic formalisms - statements, proofs, and propositional logic.
- Introduction to predicate logic, quantifiers.
- Sets, relations, and functions.
- Proof techniques, mathematical induction.
- Recursion, structural induction.
- Binary relations, closure, transitivity.
- Equivalence and partial orders.
- Composition of relations and functions.
- Basics of graphs, isomorphism, subgraphs, directed graphs.
- Graph connectivity and distance, trees, and spanning trees.
- Infinite sets and the halting problem.
- Literature
- HLINĚNÝ, Petr. Úvod do informatiky. Elportál. Brno: Masarykova univerzita, 2010. ISSN 1802-128X. URL info
- MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. 3., upr. a dopl. vyd. V Praze: Karolinum, 2007, 423 s. ISBN 9788024614113. info
- Teaching methods
- This subject has regular weekly lectures and compulsory tutorials. Moreover, the students are expected to practice at home using online questionnaires, via IS MU. All the study materials and study agenda are presented through the online IS syllabus.
- Assessment methods
- Students' evaluation in this course consists of these three parts: through term evaluation (minimal score is required), "computer" written exam (again, minimal score is required), and an optional classical written exam.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://is.muni.cz/el/1433/podzim2024/IB000/index.qwarp
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/fi/autumn2024/IB000