FI:PB071 Principles of low-level prog. - Course Information
PB071 Principles of low-level programming
Faculty of InformaticsSpring 2025
- Extent and Intensity
- 2/2/1. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
In-person direct teaching - Teacher(s)
- doc. RNDr. Petr Švenda, Ph.D. (lecturer)
Mgr. Roman Lacko (seminar tutor)
Mgr. Luděk Bártek, Ph.D. (seminar tutor)
Kryštof Bednařík (seminar tutor)
Bc. Adéla Bierská (seminar tutor)
Nikola Davidová (seminar tutor)
Bc. Juraj Fiala (seminar tutor)
Boris Hajduk (seminar tutor)
Jindřich Halabala (seminar tutor)
Bc. Kristína Hanicová (seminar tutor)
Bc. Veronika Hanulíková (seminar tutor)
Petr Hejčl (seminar tutor)
Aleš Horna (seminar tutor)
Bc. Lubomír Hrbáček (seminar tutor)
Miroslav Jaroš (seminar tutor)
Bc. Tomáš Jaroš (seminar tutor)
Mgr. Vojtěch Jelínek (seminar tutor)
Bc. Tomáš Jusko (seminar tutor)
Mgr. Petr Kadlec (seminar tutor)
Ján Kapko (seminar tutor)
Iva Kasprzaková (seminar tutor)
Bc. Martin Klimeš (seminar tutor)
Samuel Malec (seminar tutor)
Bc. Juraj Marcin (seminar tutor)
Dominik Melkovič (seminar tutor)
Bc. Ota Mikušek (seminar tutor)
Adam Mydla (seminar tutor)
Mgr. Patrick Ondika (seminar tutor)
Bc. Adam Parák (seminar tutor)
Miroslav Patlevič (seminar tutor)
Michal Rábek (seminar tutor)
RNDr. Lukáš Ručka (seminar tutor)
Jozef Sabo (seminar tutor)
Samuel Sabo (seminar tutor)
Mgr. Radoslav Sabol (seminar tutor)
Bc. Jindřich Sedláček (seminar tutor)
Samuel Stančík (seminar tutor)
Štěpán Šonovský (seminar tutor)
David Štorek (seminar tutor)
Bc. Dávid Šutor (seminar tutor)
Pavol Trnavský (seminar tutor)
Martin Tvarožek (seminar tutor)
Bc. Tomáš Vondrák (seminar tutor)
Filip Weinberger (seminar tutor)
Jakub Wolek (seminar tutor)
Radoslav Baník (assistant)
Bc. Matej Focko (assistant)
Mgr. Samuel Gorta (assistant)
Adam Hadar (assistant)
Adam Haluška (assistant)
Bc. Patrik Horák (assistant)
Jozef Hoschek (assistant)
Matúš Jakuboc (assistant)
Martin Marcinech (assistant)
Bc. Tomáš Menšík (assistant)
Bc. Ondřej Metelka (assistant)
Marcel Nadzam (assistant)
Jan Nouza (assistant)
Klaudia Pohanková (assistant)
Peter Rakšány (assistant)
Mgr. Bc. Roman Solař (assistant)
Ján Václav (assistant)
Diana Valková (assistant)
Tomáš Waldsberger (assistant)
Veronika Zemanová (assistant) - Guaranteed by
- doc. RNDr. Petr Švenda, Ph.D.
Department of Computer Systems and Communications – Faculty of Informatics
Supplier department: Department of Computer Systems and Communications – Faculty of Informatics - Prerequisites
- SOUHLAS
The course is offered only to students repeating the course as a result of failing to complete it. Students are expected to have the basic knowledge of algorithmization in Python or another procedural language. Students are also required to have user experience with Unix/Linux OS, as homework is submitted and tested on a Unix/Linux server. - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 38 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to:
Understand and use basic C syntax according to ANSI and ISO/IEC norms.
Decompose given problem and perform practical implementation.
Use modern development tools (IDE, debugger, version control...).
Understand basic C functions for POSIX system.
Annotate source code with possibility to automatically generate documentation. Understand and practically use documentation for existing functions.
Use and follow programming best practices.
Compile programs both under Unix/Linux and Windows. - Learning outcomes
- After a course completion, the student will be able to:
- write non-trivial programs in C language;
- use basic development tools including IDE, debugger, versioning system and dynamic analysis of memory use;
- understand code execution on the level of CPU and memory;
- use dynamic allocation and apply correct deallocation where necessary;
- write programs with an application of good programming practices; - Syllabus
- Historical background of the C language. Its relation to the Unix OS.
- C compilers under Unix and MS-DOS/MS-Windows, integrated development environment, debugger, version control. Good programming practices, testing.
- Data types, constants, declarations, expressions. Assignment expressions and statements.
- Basic program structure. Preprocessor statements. Comments. Control structures. Relational expressions. Elementary I/O operations.
- Arrays and pointers. Functions. Calling by value, passing arguments by pointer.
- User defined data types. Dynamic memory allocation.
- I/O in details. Using files. Wide characters.
- Strings and string manipulation. Standard C library according to ANSI and ISO/IEC standards. Calling Unix core services. Further Unix libraries for C. POSIX C Library. Implementation on Windows.
- Safe and defensive programming.
- Automated and manual testing.
- Literature
- Kernighan, Brian W. - Ritchie, Dennis M. Programovací jazyk C. Brno: Computer Press, 2006. ISBN 80-251-0897-X
- HEROUT, Pavel. Učebnice jazyka C. 3. upr. vyd. České Budějovice: KOPP, 1996, 269 s. ISBN 80-85828-21-9. info
- HEROUT, Pavel. Učebnice jazyka C. České Budějovice: KOPP, 1998, 236 s. ISBN 80-85828-50-2. info
- DRESSLER, Miroslav. Programovací jazyky GNU : volně šiřitelná programátorská prostředí : Fortran, jazyk C, Pascal, GRX, DJGPP, RHIDE, RSX, VESA, EMX, MAKE. 1. vyd. Praha: Computer Press, 1998, xix, 225. ISBN 8072260707. info
- Bookmarks
- https://is.muni.cz/ln/tag/FI:PB071!
- Teaching methods
- Teaching consists from theoretical lectures combined with the practical exercises and programming homework selected to practice topics from lectures.
- Assessment methods
- To be allowed to participate in final exam, a student student will undertake 6 programming homework (at least four of them for non-zero points) and participate in one final programming exercise consisting of test and practical programming exercise. 85 points are required to pass the course in addition to successful completion of requirements of practical exercises.
The students are working on given homework (usually finalized at home or in computer lab). Homework are awarded by point according to given criteria. Recommended finalization is exam, which is maintained as test questionnaire on computer. Precondition for undertake exam is to have awarded credit from practical exercises and autonomously programmed final assignment. Classification is based on points gathered from exercises, test questionnaire and final assignment. Participation on practical exercises is mandatory, unless teacher allows for exception (e.g., based on student exceptional knowledge of the subject). - Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- The course is taught annually.
The course is taught: every week. - Listed among pre-requisites of other courses
- IB113 Introduction to Programming and Algorithms
!NOW(IB111) && !IB111 && !PB162 && !PB161 && !PB071 && !IB001 && !program(B-INF) && !program(B-PVA) && !program(B-CS) - PB006 Principles of Programming Languages and OOP
(IB111 || NOW(IB111)) && (PB071 || PB111) - PB152cv Operating Systems - practicals
(PB153 || PB152) && (PB111 || PB071 || SOUHLAS) - PB173 Domain specific development
PB111 || PB071 || SOUHLAS - PB176 Basics of Quality and Managment of Source Code
PB006 || PB071 || now(PB071)
- IB113 Introduction to Programming and Algorithms
- Teacher's information
- https://www.fi.muni.cz/pb071/
- Enrolment Statistics (Spring 2025, recent)
- Permalink: https://is.muni.cz/course/fi/spring2025/PB071