2012
The DAG-width of directed graphs
BERWANGER, Dietmar, Anuj DAWAR, Paul HUNTER, Stephan KREUTZER, Jan OBDRŽÁLEK et. al.Základní údaje
Originální název
The DAG-width of directed graphs
Autoři
BERWANGER, Dietmar (276 Německo), Anuj DAWAR (826 Velká Británie a Severní Irsko), Paul HUNTER (36 Austrálie), Stephan KREUTZER (276 Německo) a Jan OBDRŽÁLEK (203 Česká republika, garant, domácí)
Vydání
Journal of Combinatorial Theory, Ser B, Amsterdam, Elsevier B.V. 2012, 0095-8956
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.845
Kód RIV
RIV/00216224:14330/12:00057892
Organizační jednotka
Fakulta informatiky
UT WoS
000305492000005
Klíčová slova anglicky
tree-width; mu-calculus; model checking; parity games; decompositions; monotonicity; complexity; logic
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 12. 2012 10:31, doc. Mgr. Jan Obdržálek, PhD.
Anotace
V originále
Tree-width is a well-known metric on undirected graphs that measures how tree-like a graph is and gives a notion of graph decomposition that proves useful in algorithm design. Tree-width can be characterised by a graph searching game where a number of cops attempt to capture a robber. We consider the natural adaptation of this game to directed graphs and show that monotone strategies in the game yield a measure, called DAG-width, that can be seen to describe how close a directed graph is to a directed acyclic graph (DAG). We also provide an associated decomposition and show how it is useful for developing algorithms on directed graphs. In particular, we show that the problem of determining the winner of a parity game is solvable in polynomial time on graphs of bounded DAG-width. We also consider the relationship between DAG-width and other connectivity measures such as directed tree-width and path-width. A consequence we obtain is that certain NP-complete problems such as Hamiltonicity and disjoint paths are polynomial-time computable on graphs of bounded DAG-width.
Návaznosti
GC201/09/J021, projekt VaV |
|