J 2013

Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study

KREPL, Miroslav, Michal OTYEPKA, Pavel BANÁŠ a Jiří ŠPONER

Základní údaje

Originální název

Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study

Název česky

Vliv guanin -> inosin substituce na stabilitu kanonických DNA a RNA duplexů: Studie pomocí molekulové dynamiky a thermodynamické integrace.

Autoři

KREPL, Miroslav (203 Česká republika), Michal OTYEPKA (203 Česká republika), Pavel BANÁŠ (203 Česká republika) a Jiří ŠPONER (203 Česká republika, garant, domácí)

Vydání

JOURNAL OF PHYSICAL CHEMISTRY B, Washington, American Chemical Society, 2013, 1520-6106

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10403 Physical chemistry

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.377

Kód RIV

RIV/00216224:14740/13:00067680

Organizační jednotka

Středoevropský technologický institut

UT WoS

000315181600046

Klíčová slova anglicky

FREE-ENERGY CALCULATIONS; PARTICLE MESH EWALD; ACID BASE-PAIRS; NUCLEIC-ACIDS; FORCE-FIELD; BIOMOLECULAR SIMULATIONS; SECONDARY STRUCTURE; HYDROGEN-BONDS; AMINO-GROUPS; A-RNA

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 28. 6. 2013 12:41, Olga Křížová

Anotace

V originále

Guanine to inosine (G -> I) substitution has often been used to study various properties of nucleic acids. Inosine differs from guanine only by loss of the N2 amino group, while both bases have similar electrostatic potentials. Therefore, G -> I substitution appears to be optimally suited to probe structural and thermodynamics effects of single H-bonds and atomic groups. However, recent experiments have revealed substantial difference in free energy impact of G -> I substitution in the context of B-DNA and A-RNA canonical helices, suggesting that the free energy changes reflect context-dependent balance of energy contributions rather than intrinsic strength of a single Fl-bond. In the present study, we complement the experiments by free energy computations using thermodynamics integration method based on extended explicit solvent molecular dynamics simulations. The computations successfully reproduce the basic qualitative difference in free energy impact of G -> I substitution in B-DNA and A-RNA helices although the magnitude of the effect is somewhat underestimated. The computations, however, do not reproduce the salt dependence of the free energy changes. We tentatively suggest that the different effect of G -> I substitution in A-RNA and B-DNA may be related to different topologies of these helices, which affect the electrostatic interactions between the base pairs and the negatively charged backbone. Limitations of the computations are briefly discussed.

Návaznosti

ED1.1.00/02.0068, projekt VaV
Název: CEITEC - central european institute of technology