2013
Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study
KREPL, Miroslav, Michal OTYEPKA, Pavel BANÁŠ a Jiří ŠPONERZákladní údaje
Originální název
Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study
Název česky
Vliv guanin -> inosin substituce na stabilitu kanonických DNA a RNA duplexů: Studie pomocí molekulové dynamiky a thermodynamické integrace.
Autoři
KREPL, Miroslav (203 Česká republika), Michal OTYEPKA (203 Česká republika), Pavel BANÁŠ (203 Česká republika) a Jiří ŠPONER (203 Česká republika, garant, domácí)
Vydání
JOURNAL OF PHYSICAL CHEMISTRY B, Washington, American Chemical Society, 2013, 1520-6106
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.377
Kód RIV
RIV/00216224:14740/13:00067680
Organizační jednotka
Středoevropský technologický institut
UT WoS
000315181600046
Klíčová slova anglicky
FREE-ENERGY CALCULATIONS; PARTICLE MESH EWALD; ACID BASE-PAIRS; NUCLEIC-ACIDS; FORCE-FIELD; BIOMOLECULAR SIMULATIONS; SECONDARY STRUCTURE; HYDROGEN-BONDS; AMINO-GROUPS; A-RNA
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 6. 2013 12:41, Olga Křížová
Anotace
V originále
Guanine to inosine (G -> I) substitution has often been used to study various properties of nucleic acids. Inosine differs from guanine only by loss of the N2 amino group, while both bases have similar electrostatic potentials. Therefore, G -> I substitution appears to be optimally suited to probe structural and thermodynamics effects of single H-bonds and atomic groups. However, recent experiments have revealed substantial difference in free energy impact of G -> I substitution in the context of B-DNA and A-RNA canonical helices, suggesting that the free energy changes reflect context-dependent balance of energy contributions rather than intrinsic strength of a single Fl-bond. In the present study, we complement the experiments by free energy computations using thermodynamics integration method based on extended explicit solvent molecular dynamics simulations. The computations successfully reproduce the basic qualitative difference in free energy impact of G -> I substitution in B-DNA and A-RNA helices although the magnitude of the effect is somewhat underestimated. The computations, however, do not reproduce the salt dependence of the free energy changes. We tentatively suggest that the different effect of G -> I substitution in A-RNA and B-DNA may be related to different topologies of these helices, which affect the electrostatic interactions between the base pairs and the negatively charged backbone. Limitations of the computations are briefly discussed.
Návaznosti
ED1.1.00/02.0068, projekt VaV |
|