2012
Effective free-text medical record processing and information retrieval.
BURŠA, M., L. LHOTSKÁ, V. CHUDÁČEK, J. SPILKA, Petr JANKŮ et. al.Základní údaje
Originální název
Effective free-text medical record processing and information retrieval.
Autoři
BURŠA, M. (203 Česká republika, garant), L. LHOTSKÁ (203 Česká republika), V. CHUDÁČEK (203 Česká republika), J. SPILKA (203 Česká republika), Petr JANKŮ (203 Česká republika, domácí) a Martin HUSER (203 Česká republika, domácí)
Vydání
Berlin, IFMBE Proceedings: World Congress on Medical Physics and Biomedical Engineering, od s. 1305-1308, 4 s. 2012
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
30214 Obstetrics and gynaecology
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14110/12:00064004
Organizační jednotka
Lékařská fakulta
ISBN
978-3-642-29304-7
Klíčová slova anglicky
Swarm Intelligence; Ant Colony; Textual Data Mining; Medical Record Processing; Hospital Information System
Změněno: 13. 10. 2013 13:24, prof. MUDr. Martin Huser, Ph.D., MBA
Anotace
V originále
Information mining from textual data becomes a very challenging task when the structure of the text record is very loose without any rules. The task becomes even more difficult when natural language is used and no apriori knowledge is available. The medical environment itself is also very specific: the natural language used in textual description varies with the personality creating the record (there are many personalized approaches), however it is restricted by terminology (i.e. medical terms, medical standards, etc.). Moreover, the typical patient record is filled with typographical errors, duplicates, ambiguities, syntax errors and many (nonstandard) abbreviations. This paper describes the process of mining information from loosely structured medical textual records with no apriori knowledge. In the paper we depict the process of mining a large dataset of 50,000–120,000 records 20 attributes in database tables, originating from the hospital information system (thanks go to the University Hospital in Brno, Czech Republic) recording over 11 years. This paper concerns only textual attributes with free text input, that means 620,000 text fields in 16 attributes. Each attribute item contains ~800–1,500 characters (diagnoses, medications, etc.). The output of this task is a set of ordered/nominal attributes suitable for rule discovery mining and automated processing that can help in asphyxia prediction during delivery. The proposed technique has an important impact on reduction of the processing time of loosely structured textual records for experts. Note that this project is an ongoing process (and research) and new data are irregularly received from the medical facility, justifying the need for robust and fool-proof algorithms