2015
Cell tracking accuracy measurement based on comparison of acyclic oriented graphs
MATULA, Pavel, Martin MAŠKA, Dmitry SOROKIN, Petr MATULA, Carlos ORTIZ-DE-SOLÓRZANO et. al.Základní údaje
Originální název
Cell tracking accuracy measurement based on comparison of acyclic oriented graphs
Autoři
MATULA, Pavel (203 Česká republika, garant, domácí), Martin MAŠKA (203 Česká republika, domácí), Dmitry SOROKIN (643 Rusko, domácí), Petr MATULA (203 Česká republika, domácí), Carlos ORTIZ-DE-SOLÓRZANO (724 Španělsko) a Michal KOZUBEK (203 Česká republika, domácí)
Vydání
PLoS ONE, 2015, 1932-6203
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10610 Biophysics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.057
Kód RIV
RIV/00216224:14330/15:00080576
Organizační jednotka
Fakulta informatiky
UT WoS
000366725800027
Klíčová slova anglicky
cell tracking; acyclic graph; measure;
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 4. 2018 14:53, doc. RNDr. Martin Maška, Ph.D.
Anotace
V originále
Tracking motile cells in time-lapse series is challenging and is required in many biomedical applications. Cell tracks can be mathematically represented as acyclic oriented graphs. Their vertices describe the spatio-temporal locations of individual cells, whereas the edges represent temporal relationships between them. Such a representation maintains the knowledge of all important cellular events within a captured field of view, such as migration, division, death, and transit through the field of view. The increasing number of cell tracking algorithms calls for comparison of their performance. However, the lack of a standardized cell tracking accuracy measure makes the comparison impracticable. This paper defines and evaluates an accuracy measure for objective and systematic benchmarking of cell tracking algorithms. The measure assumes the existence of a ground-truth reference, and assesses how difficult it is to transform a computed graph into the reference one. The difficulty is measured as a weighted sum of the lowest number of graph operations, such as split, delete, and add a vertex and delete, add, and alter the semantics of an edge, needed to make the graphs identical. The measure behavior is extensively analyzed based on the tracking results provided by the participants of the first Cell Tracking Challenge hosted by the 2013 IEEE International Symposium on Biomedical Imaging. We demonstrate the robustness and stability of the measure against small changes in the choice of weights for diverse cell tracking algorithms and fluorescence microscopy datasets. As the measure penalizes all possible errors in the tracking results and is easy to compute, it may especially help developers and analysts to tune their algorithms according to their needs.
Návaznosti
CZ.1.07/2.3.00/30.0030, interní kód MU |
| ||
GA14-22461S, projekt VaV |
|