2014
Semantically Consistent Human Motion Segmentation
BALÁŽIA, Michal; Jan SEDMIDUBSKÝ a Pavel ZEZULAZákladní údaje
Originální název
Semantically Consistent Human Motion Segmentation
Autoři
Vydání
LNCS 8644. Switzerland, Proceedings of 25th International Conference on Database and Expert Systems Applications (DEXA 2014), od s. 423-437, 15 s. 2014
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/14:00073223
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-10072-2
ISSN
EID Scopus
2-s2.0-84958550480
Klíčová slova anglicky
motion capture data; segmentation; semantic consistency; phases of movement; motion retrieval
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 10. 2017 17:42, RNDr. Michal Balážia, Ph.D.
Anotace
V originále
The development of motion capturing devices like Microsoft Kinect poses new challenges in the exploitation of human-motion data for various application fields, such as computer animation, visual surveillance, sports or physical medicine. In such applications, motion segmentation is recognized as one of the most fundamental steps. Existing methods usually segment motions at the level of logical actions, like walking or jumping, to annotate the motion segments by textual descriptions. Although the action-level segmentation is convenient for motion summarization and action retrieval, it does not suit for general action-independent motion retrieval. In this paper, we introduce a novel semantically consistent algorithm for partitioning motions into short and further non-divisible segments. The property of semantic consistency ensures that the start and end of each segment are detected at semantically equivalent phases of movement to support general motion retrieval. The proposed segmentation algorithm first extracts relative distances between particular body parts as motion features. Based on these features, segments are consequently identified by constructing and analyzing a one-dimensional energy curve representing local motion changes. Experiments conducted on real-life motions demonstrate that the algorithm outperforms other relevant approaches in terms of recall and precision with respect to a user-defined ground truth. Moreover, it identifies segments at semantically equivalent phases with the highest accuracy.
Návaznosti
| GBP103/12/G084, projekt VaV |
| ||
| MUNI/A/0915/2013, interní kód MU |
| ||
| VG20122015073, projekt VaV |
|