Informační systém Masarykovy univerzity 

Robustness Analysis of Stochastic Biochemical Systems

česky | in English

ČEŠKA, Milan, David ŠAFRÁNEK, Sven DRAŽAN a Luboš BRIM. Robustness Analysis of Stochastic Biochemical Systems. Plos One, SAN FRANCISCO: PUBLIC LIBRARY SCIENCE, 2014, roč. 9, č. 4, s. 1-23. ISSN 1932-6203. doi:10.1371/journal.pone.0094553.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Robustness Analysis of Stochastic Biochemical Systems
Autoři ČEŠKA, Milan (203 Česká republika, garant, domácí), David ŠAFRÁNEK (203 Česká republika, domácí), Sven DRAŽAN (203 Česká republika, domácí) a Luboš BRIM (203 Česká republika, domácí).
Vydání Plos One, SAN FRANCISCO, PUBLIC LIBRARY SCIENCE, 2014, 1932-6203.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor Informatika
Stát vydavatele Spojené státy americké
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 3.234
Kód RIV RIV/00216224:14330/14:00075751
Organizační jednotka Fakulta informatiky
Doi http://dx.doi.org/10.1371/journal.pone.0094553
UT WoS 000335227400014
Klíčová slova anglicky stochastic models; robustness analysis; probabilistic model checking
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnil: RNDr. Pavel Šmerk, Ph.D., učo 3880. Změněno: 27. 4. 2015 03:58.
Anotace
We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.
Návaznosti
EE2.3.20.0256, projekt VaVNázev: Vytvoření výzkumného týmu a mezinárodního konzorcia pro počítačový model buňky sinice
VytisknoutZobrazeno: 23. 11. 2017 06:26

Relevantní odkazy 


Nahoru | Aktuální datum a čas: 23. 11. 2017 06:26, 47. (lichý) týden

Kontakty: istech(zavináč/atsign)fi(tečka/dot)muni(tečka/dot)cz, studijní odd., správci práv, is-technici, e-technici, IT podpora | Použití cookies | Více o Informačním systému