2014
Robustness Analysis of Stochastic Biochemical Systems
ČEŠKA, Milan; David ŠAFRÁNEK; Sven DRAŽAN a Luboš BRIMZákladní údaje
Originální název
Robustness Analysis of Stochastic Biochemical Systems
Autoři
ČEŠKA, Milan (203 Česká republika, domácí); David ŠAFRÁNEK (203 Česká republika, domácí); Sven DRAŽAN (203 Česká republika, domácí) a Luboš BRIM (203 Česká republika, garant, domácí)
Vydání
Plos One, SAN FRANCISCO, PUBLIC LIBRARY SCIENCE, 2014, 1932-6203
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.234
Kód RIV
RIV/00216224:14330/14:00075751
Organizační jednotka
Fakulta informatiky
UT WoS
000335227400014
EID Scopus
2-s2.0-84899700332
Klíčová slova anglicky
stochastic models; robustness analysis; probabilistic model checking
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 4. 2019 09:30, prof. RNDr. Luboš Brim, CSc.
Anotace
V originále
We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.
Návaznosti
EE2.3.20.0256, projekt VaV |
|