2014
Runaway electrons from a ‘beam-bulk’ model of streamer: application to TGFs
CHANRION, Olivier, Zdeněk BONAVENTURA, Deniz ÇINAR, Anne BOURDON, Torsten NEUBERT et. al.Základní údaje
Originální název
Runaway electrons from a ‘beam-bulk’ model of streamer: application to TGFs
Autoři
CHANRION, Olivier (250 Francie), Zdeněk BONAVENTURA (203 Česká republika, garant, domácí), Deniz ÇINAR (250 Francie), Anne BOURDON (250 Francie) a Torsten NEUBERT (250 Francie)
Vydání
Environmental Research Letters, 2014, 1748-9326
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10305 Fluids and plasma physics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.906
Kód RIV
RIV/00216224:14310/14:00076909
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000339885100011
Klíčová slova anglicky
atmospheric electricity; streamer discharge; TGF; Monte Carlo methods; drift diffusion methods
Změněno: 17. 4. 2015 10:01, Ing. Andrea Mikešková
Anotace
V originále
The generation of x- and gamma-rays in atmospheric discharges has been studied intensively since the discovery of terrestrial gamma-ray flashes (TGFs) by the Compton gamma-ray Observatory in 1991. Emissions are bremsstrahlung from high energy particles accelerated in large scale atmospheric electric fields associated with thunderstorms. Whereas observations now are many, both from lightning and the laboratory, the phases of the discharge where emissions are generated are still debated and several processes for electron acceleration have been put forward by theorists. This paper address the electron acceleration in streamer region of lightning. We present the first 'beam-bulk' model of self-consistent streamer dynamics and electron acceleration. The model combines a Monte Carlo Collision code that simulates the high-energy electrons (> 100 eV) and a fluid code that simulates the bulk of the low-energy electrons and ions. For a negative streamer discharge, we show how electrons are accelerated in the large electric field in the tip of the streamer and travel ahead of the streamer where they ionize the gas. In comparison to the results obtained with a classical fluid model for a negative streamer, the beam-bulk model predicts a decrease of the magnitude of the peak electric field and an increase of the streamer velocity. Furthermore, we show that a significant number of runaway electrons is lost by diffusion outside of the streamer tip. The results presented here do not yet include extra amplification nor acceleration far away from the streamer to explain the electron energies seen in TGFs. Still, in the light of those results, we emphasize that the production of runaway electrons from streamers needs to be simulated including the self-consistent feedback of runaways on the streamer. Simulations with a beam-bulk model may not only help to understand the fundamental atmospheric processes behind TGFs, but also pave the way for the interpretation of remote sensing of the most energetic discharges in the Earth's atmosphere and thus help to address their environmental impact.
Návaznosti
ED2.1.00/03.0086, projekt VaV |
|