J 2014

Semi-supervised classification of vegetation: preserving the good old units and searching for new ones

TICHÝ, Lubomír; Milan CHYTRÝ a Zoltán BOTTA-DUKÁT

Základní údaje

Originální název

Semi-supervised classification of vegetation: preserving the good old units and searching for new ones

Autoři

TICHÝ, Lubomír; Milan CHYTRÝ a Zoltán BOTTA-DUKÁT

Vydání

Journal of Vegetation Science, Wiley-Blackwell, 2014, 1100-9233

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10600 1.6 Biological sciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.709

Kód RIV

RIV/00216224:14310/14:00074360

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000343867500019

EID Scopus

2-s2.0-84925298742

Klíčová slova anglicky

Classification stability; Clustering; Data analysis; k-means; Partitioning around medoids; Phytosociology; Plant community ecology; Vegetation type

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 13. 3. 2018 10:46, Mgr. Lucie Jarošová, DiS.

Anotace

V originále

Aim: The unsupervised nature of traditional numerical methods used to classify vegetation hinders the development of comprehensive vegetation classification systems. Each new unsupervised classification yields partitions that are partly inconsistent with previous classifications and change group membership for some sites. In contrast, supervised methods account for previously established vegetation units, but cannot define new ones. Therefore, we introduce the concept of semi-supervised classification to community ecology and vegetation science. Semi-supervised classification formally reproduces the existing units in a supervised mode and simultaneously identifies new units among unassigned sites in an unsupervised mode. We discuss the concept of semi-supervised clustering, introduce semi-supervised variants of two clustering algorithms that produce groups with crisp boundaries, k-means and partitioning around medoids (PAM), provide a free software tool to perform these classifications and demonstrate the advantages using example data sets of vegetation plots. Methods: Semi-supervised methods use a priori information about group membership for some sites to define centroids (k-means) or medoids (PAM) of site groups that represent previously established vegetation units. They identify these groups in a species hyperspace and assign new sites to them. At the same time, they search for a user-defined number of new groups. We compared the unsupervised, supervised and semi-supervised methods using an example of a forest vegetation data set that was previously classified using expert knowledge, and assessed how well these methods reproduced vegetation units defined by experts. Then we compared supervised and semi-supervised methods in a task when a grassland vegetation classification established in one country was extended to two neighbouring countries. Results and conclusions: Example analyses of vegetation plot data sets demonstrated that semi-supervised variants of k-means and PAM are extremely valuable tools for extending existing vegetation classifications while preserving previously defined vegetation units. They can be used both for identifying so far unrecognized vegetation types in the regions where a vegetation classification already exists and for extending a vegetation classification from a particular region to neighbouring regions with partly identical but partly different vegetation types. Both k-means and PAM provide site groups with crisp boundaries, which makes them a simpler alternative to fuzzy clustering methods.

Návaznosti

GAP505/11/0732, projekt VaV
Název: Zobecněná řízená klasifikace v ekologii společenstev
Investor: Grantová agentura ČR, Generalized supervised classification in community ecology