2014
Markov Decision Processes with Multiple Long-Run Average Objectives
BRÁZDIL, Tomáš, Václav BROŽEK, Krishnendu CHATTERJEE, Vojtěch FOREJT, Antonín KUČERA et. al.Základní údaje
Originální název
Markov Decision Processes with Multiple Long-Run Average Objectives
Autoři
BRÁZDIL, Tomáš (203 Česká republika, domácí), Václav BROŽEK (203 Česká republika, domácí), Krishnendu CHATTERJEE (356 Indie), Vojtěch FOREJT (203 Česká republika, domácí) a Antonín KUČERA (203 Česká republika, garant, domácí)
Vydání
Logical Methods in Computer Science, Technical University of Braunschweig, 2014, 1860-5974
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 0.357
Kód RIV
RIV/00216224:14330/14:00074494
Organizační jednotka
Fakulta informatiky
UT WoS
000333744700001
Klíčová slova anglicky
Markov decision processes; mean-payoff reward; multi-objective optimisation; formal verification
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 17. 6. 2016 10:25, prof. RNDr. Antonín Kučera, Ph.D.
Anotace
V originále
We study Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) functions. We consider two different objectives, namely, expectation and satisfaction objectives. Given an MDP with k limit-average functions, in the expectation objective the goal is to maximize the expected limit-average value, and in the satisfaction objective the goal is to maximize the probability of runs such that the limit-average value stays above a given vector. We show that under the expectation objective, in contrast to the case of one limit-average function, both randomization and memory are necessary for strategies even for epsilon-approximation, and that finite-memory randomized strategies are sufficient for achieving Pareto optimal values. Under the satisfaction objective, in contrast to the case of one limit-average function, infinite memory is necessary for strategies achieving a specific value (i.e. randomized finite-memory strategies are not sufficient), whereas memoryless randomized strategies are sufficient for epsilon-approximation, for all epsilon>0. We further prove that the decision problems for both expectation and satisfaction objectives can be solved in polynomial time and the trade-off curve (Pareto curve) can be epsilon-approximated in time polynomial in the size of the MDP and 1/epsilon, and exponential in the number of limit-average functions, for all epsilon>0. Our analysis also reveals flaws in previous work for MDPs with multiple mean-payoff functions under the expectation objective, corrects the flaws, and allows us to obtain improved results.
Návaznosti
GPP202/12/P612, projekt VaV |
|