KREPL, Miroslav, Marek HAVRILA, Petr STADLBAUER, Pavel BANÁŠ, Michal OTYEPKA, Josef PASULKA, Richard ŠTEFL a Jiří ŠPONER. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes? Journal of Chemical Theory and Computation. WASHINGTON: AMER CHEMICAL SOC, roč. 11, č. 3, s. 1220-1243. ISSN 1549-9618. doi:10.1021/ct5008108. 2015.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes?
Autoři KREPL, Miroslav (203 Česká republika), Marek HAVRILA (703 Slovensko, domácí), Petr STADLBAUER (203 Česká republika), Pavel BANÁŠ (203 Česká republika), Michal OTYEPKA (203 Česká republika), Josef PASULKA (203 Česká republika, domácí), Richard ŠTEFL (203 Česká republika, domácí) a Jiří ŠPONER (203 Česká republika, garant, domácí).
Vydání Journal of Chemical Theory and Computation, WASHINGTON, AMER CHEMICAL SOC, 2015, 1549-9618.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10403 Physical chemistry
Stát vydavatele Spojené státy
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 5.301
Kód RIV RIV/00216224:14740/15:00080801
Organizační jednotka Středoevropský technologický institut
Doi http://dx.doi.org/10.1021/ct5008108
UT WoS 000350918300039
Klíčová slova anglicky MOLECULAR-DYNAMICS SIMULATIONS; PARTICLE MESH EWALD; MECHANICS FORCE-FIELDS; RIBOSOMAL L1 STALK; BINDING PROTEINS; NUCLEIC-ACIDS; CAENORHABDITIS-ELEGANS; CRYSTAL-STRUCTURE; NONCODING RNAS; ANIMAL VIRUS
Štítky rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Martina Prášilová, učo 342282. Změněno: 18. 5. 2015 12:26.
Anotace
We report over 30 mu s of unrestrained molecular dynamics simulations of six protein-RNA complexes in explicit solvent. We utilize the AMBER ff99bsc0 chi(OL3) RNA force field combined with the ff99SB protein force field and its more recent ff12SB version with reparametrized side-chain dihedrals. The simulations show variable behavior, ranging from systems that are essentially stable to systems with progressive deviations from the experimental structure, which we could not stabilize anywhere close to the starting experimental structure. For some systems, microsecond-scale simulations are necessary to achieve stabilization after initial sizable structural perturbations. The results show that simulations of protein-RNA complexes are challenging and every system should be treated individually. The simulations are affected by numerous factors, including properties of the starting structures (the initially high force field potential energy, resolution limits, conformational averaging, crystal packing, etc.), force field imbalances, and real flexibility of the studied systems. These factors, and thus the simulation behavior, differ from system to system. The structural stability of simulated systems does not correlate with the size of buried interaction surface or experimentally determined binding affinities but reflects the type of protein-RNA recognition. Protein-RNA interfaces involving shape-specific recognition of RNA are more stable than those relying on sequence-specific RNA recognition. The differences between the protein force fields are considerably smaller than the uncertainties caused by sampling and starting structures. The ff12SB improves description of the tyrosine side-chain group, which eliminates some problems associated with tyrosine dynamics.
Návaznosti
ED1.1.00/02.0068, projekt VaVNázev: CEITEC - central european institute of technology
GBP305/12/G034, projekt VaVNázev: Centrum biologie RNA
VytisknoutZobrazeno: 20. 4. 2024 03:55