J 2012

Time-of-Flight Based Calibration of an Ultrasonic Computed Tomography System

FILIPIK, Adam, Jiří JAN a Igor PETERLÍK

Základní údaje

Originální název

Time-of-Flight Based Calibration of an Ultrasonic Computed Tomography System

Autoři

FILIPIK, Adam (203 Česká republika), Jiří JAN (203 Česká republika) a Igor PETERLÍK (703 Slovensko, domácí)

Vydání

Radioengineering, PRAHA, SPOLECNOST PRO RADIOELEKTRONICKE INZENYRSTVI, 2012, 1210-2512

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

20206 Computer hardware and architecture

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 0.687

Kód RIV

RIV/00216224:14330/12:00080255

Organizační jednotka

Fakulta informatiky

UT WoS

000303135600023

Klíčová slova anglicky

Ultrasonic computed tomography; ultrasonic transmission tomography; calibration of sensors; nonlinear optimisation; time-of-flight measurements
Změněno: 22. 5. 2015 06:45, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

The paper presents a novel method for calibration of measuring geometry and of individual signal delays of transducers in ultrasonic computed tomography (USCT) systems via computational processing of multiple time-of-flight measurements of ultrasonic (US) impulses. The positions and time-delay parameters of thousands of ultrasonic transducers inside the USCT tank are calibrated by this approach with a high precision required for the tomographic reconstruction; such accuracy cannot be provided by any other known method. Although utilising similar basic principles as the global positioning system (GPS), the method is importantly generalised in treating all transducer parameters as the to-be calibrated (floating) unknowns, without any a-priori known positions and delays. The calibration is formulated as a non-linear least-squares problem, minimizing the differences between the calculated and measured time-of-arrivals of ultrasonic pulses. The paper provides detailed derivation of the method, and compares two implemented approaches (earlier calibration of individual transducers with the new approach calibrating rigid transducer arrays) via detailed simulations, aimed at testing the convergence properties and noise robustness of both approaches. Calibration using real US signals is described and, as an illustration of the utility of the presented method, a comparison is shown of two image reconstructions using the tomographic US data from a concrete experimental USCT system measuring a 3D phantom, without and after the calibration.