2011
Asymptotic Inference for Partially Observed Branching Processes
KVITKOVIČOVÁ, Andrea a VM PANARETOSZákladní údaje
Originální název
Asymptotic Inference for Partially Observed Branching Processes
Autoři
KVITKOVIČOVÁ, Andrea a VM PANARETOS
Vydání
Advances in Applied Probability, Sheffield, Applied Probability Trust, 2011, 0001-8678
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.679
UT WoS
000298713900012
Klíčová slova anglicky
Epidemic model; Galton-Watson branching process; partial observation; consistency; asymptotic distribution; martingale; stable convergence
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 1. 2016 00:19, Mgr. Andrea Kraus, M.Sc., Ph.D.
Anotace
V originále
We consider the problem of estimation in a partially observed discrete-time Galton-Watson branching process, focusing on the first two moments of the offspring distribution. Our study is motivated by modelling the counts of new cases at the onset of a stochastic epidemic, allowing for the facts that only a part of the cases is detected, and that the detection mechanism may affect the evolution of the epidemic. In this setting, the offspring mean is closely related to the spreading potential of the disease, while the second moment is connected to the variability of the mean estimators. Inference for branching processes is known for its nonstandard characteristics, as compared with classical inference. When, in addition, the true process cannot be directly observed, the problem of inference suffers significant further perturbations. We propose nonparametric estimators related to those used when the underlying process is fully observed, but suitably modified to take into account the intricate dependence structure induced by the partial observation and the interaction scheme. We show consistency, derive the limiting laws of the estimators, and construct asymptotic confidence intervals, all valid conditionally on the explosion set.