2015
A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).
KÝNOVÁ, Andrea a Petr DOBROVOLNÝZákladní údaje
Originální název
A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).
Autoři
KÝNOVÁ, Andrea (203 Česká republika, domácí) a Petr DOBROVOLNÝ (203 Česká republika, domácí)
Vydání
Acta Universitatis Carolinae Geographica, 2015, 0300-5402
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
Zemský magnetismus, geodesie, geografie
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14310/15:00085925
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova anglicky
image classification; multilayer perceptron; urban land cover; ASTER
Příznaky
Recenzováno
Změněno: 24. 3. 2016 09:16, Ing. Andrea Mikešková
Anotace
V originále
Accurate and updated land cover maps provide crucial basic information in a number of important enterprises, with sustainable development and regional planning far from the least of them. Remote sensing is probably the most efficient approach to obtaining a land cover map. However, certain intrinsic limitations limit the accuracy of automatic approaches to image classification. Classifications within highly heterogeneous urban areas are especially challenging. This study makes a presentation of multilayer perceptron (MLP), an artificial neural network (ANN), as an applicable approach to image classification. Optimal MLP architecture parameters were established by means of a training set. The resulting network was used to classify a sub-scene within ASTER imagery. The results were evaluated against a test dataset. The overall accuracy of classification was 94.8%. This is comparable to classification results from a maximum likelihood classifier (MLC) used for the same image. In built-up areas, MLP did not exaggerate built-up areas at the expense of other classes to the same extent as MLC.
Návaznosti
MUNI/A/0952/2013, interní kód MU |
|