2015
High-throughput concentration-response analysis for omics datasets
SMETANOVÁ, Soňa; Janet RIEDL; Dimitar ZITZKAT; Rolf ALTENBURGER; Wibke BUSCH et. al.Základní údaje
Originální název
High-throughput concentration-response analysis for omics datasets
Autoři
SMETANOVÁ, Soňa (203 Česká republika, domácí); Janet RIEDL (276 Německo); Dimitar ZITZKAT (276 Německo); Rolf ALTENBURGER (276 Německo, garant) a Wibke BUSCH (276 Německo)
Vydání
Toxicol. Environ. Chem. HOBOKEN (USA), Elsevier Science, 2015, 0730-7268
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30304 Public and environmental health
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.763
Kód RIV
RIV/00216224:14310/15:00086675
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000360500600031
EID Scopus
2-s2.0-84940450006
Klíčová slova anglicky
Ecotoxicogenomics; Biostatistics; Dose-response modeling; Mixture toxicity; Zebrafish embryo; Myriophyllum
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 3. 2020 11:21, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Omics-based methods are increasingly used in current ecotoxicology. Therefore, a large number of observations for various toxic substances and organisms are available and may be used for identifying modes of action, adverse outcome pathways, or novel biomarkers. For these purposes, good statistical analysis of toxicogenomic data is vital. In contrast to established ecotoxicological techniques, concentration-response modeling is rarely used for large datasets. Instead, statistical hypothesis testing is prevalent, which provides only a limited scope for inference. The present study therefore applied automated concentration-response modeling for 3 different ecotoxicotranscriptomic and ecotoxicometabolomic datasets. The modeling process was performed by simultaneously applying 9 different regression models, representing distinct mechanistic, toxicological, and statistical ideas that result in different curve shapes. The best-fitting models were selected by using Akaike's information criterion. The linear and exponential models represented the best data description for more than 50% of responses. Models generating U-shaped curves were frequently selected for transcriptomic signals (30%), and sigmoid models were identified as best fit for many metabolomic signals (21%). Thus, selecting the models from an array of different types seems appropriate, because concentration-response functions may vary because of the observed response type, and they also depend on the compound, the organism, and the investigated concentration and exposure duration range. The application of concentration-response models can help to further tap the potential of omics data and is a necessary step for quantitative mixture effect assessment at the molecular response level.
Návaznosti
| LO1214, projekt VaV |
| ||
| 603437, interní kód MU |
|