2016
Similarity Searching in Long Sequences of Motion Capture Data
SEDMIDUBSKÝ, Jan, Petr ELIÁŠ a Pavel ZEZULAZákladní údaje
Originální název
Similarity Searching in Long Sequences of Motion Capture Data
Autoři
SEDMIDUBSKÝ, Jan (203 Česká republika, garant, domácí), Petr ELIÁŠ (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Cham (ZG), Proceedings of 9th International Conference on Similarity Search and Applications (SISAP 2016), LNCS 9939, od s. 271-285, 15 s. 2016
Nakladatel
Springer International Publishing AG
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/16:00088023
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-46758-0
ISSN
UT WoS
000389801100021
Klíčová slova anglicky
motion capture data; similarity search; subsequence search; multi-level segmentation
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 5. 2020 15:26, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Motion capture data digitally represent human movements by sequences of body configurations in time. Searching in such spatio-temporal data is difficult as query-relevant motions can vary in lengths and occur arbitrarily in the very long data sequence. There is also a strong requirement on effective similarity comparison as the specific motion can be performed by various actors in different ways, speeds or starting positions. To deal with these problems, we propose a new subsequence matching algorithm which uses a synergy of elastic similarity measure and multi-level segmentation. The idea is to generate a minimum number of overlapping data segments so that there is at least one segment matching an arbitrary subsequence. A non-partitioned query is then efficiently evaluated by searching for the most similar segments in a single level only, while guaranteeing a precise answer with respect to the similarity measure. The retrieval process is efficient and scalable which is confirmed by experiments executed on a real-life dataset.
Návaznosti
GBP103/12/G084, projekt VaV |
|