2016
PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions
BENDL, Jaroslav, Miloš MUSIL, Jan ŠTOURAČ, Jaroslav ZENDULKA, Jiří DAMBORSKÝ et. al.Základní údaje
Originální název
PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions
Autoři
BENDL, Jaroslav (203 Česká republika, domácí), Miloš MUSIL (203 Česká republika, domácí), Jan ŠTOURAČ (203 Česká republika, domácí), Jaroslav ZENDULKA (203 Česká republika), Jiří DAMBORSKÝ (203 Česká republika, garant, domácí) a Jan BREZOVSKÝ (203 Česká republika, domácí)
Vydání
PLOS COMPUTATIONAL BIOLOGY 12: e100496, 2016, 1553-734X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.542
Kód RIV
RIV/00216224:14310/16:00092839
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000379348100043
Klíčová slova anglicky
GENETIC-VARIATION; REGULATORY VARIANTS; SEQUENCE VARIATION; PROTEIN FUNCTION; CAUSAL VARIANTS; COMPLEX TRAITS; MUTATIONS; DISEASE; CANCER; ELEMENTS
Změněno: 9. 4. 2017 15:35, Ing. Andrea Mikešková
Anotace
V originále
An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors.The web server is freely available to the community at http://loschmidt.chemi.muni.cz/predictsnp2.
Návaznosti
LO1214, projekt VaV |
| ||
676559, interní kód MU |
|