2016
Laser-Induced Breakdown Spectroscopy coupled with chemometrics for the analysis of steel: The issue of spectral outliers filtering
POŘÍZKA, Pavel, Jakub KLUS, David PROCHAZKA, Erik KÉPEŠ, Aleš HRDLIČKA et. al.Základní údaje
Originální název
Laser-Induced Breakdown Spectroscopy coupled with chemometrics for the analysis of steel: The issue of spectral outliers filtering
Autoři
POŘÍZKA, Pavel (203 Česká republika), Jakub KLUS (203 Česká republika), David PROCHAZKA (203 Česká republika), Erik KÉPEŠ (203 Česká republika), Aleš HRDLIČKA (203 Česká republika, domácí), Jan NOVOTNÝ (203 Česká republika), Karel NOVOTNÝ (203 Česká republika, garant, domácí) a Jozef KAISER (203 Česká republika)
Vydání
Spectrochimica Acta B, Elsevier, 2016, 0584-8547
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10406 Analytical chemistry
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.241
Kód RIV
RIV/00216224:14310/16:00093775
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000389497400012
Klíčová slova anglicky
Laser-Induced Breakdown Spectroscopy; LIBS; Outlier filtering; Principal Component Analysis; PCA; Linear correlation; Total spectral intensity; Soft Independent Modelling of Class Analogies; SIMCA
Změněno: 6. 4. 2017 21:48, Ing. Andrea Mikešková
Anotace
V originále
In this manuscript we highlight the necessity of outlier filtering prior the multivariate classification in Laser-Induced Breakdown Spectroscopy (LIBS) analyses. For the purpose of classification we chose to analyse BAM steel standards that possess similar composition of major and trace elements. To assess the improvement in figures of merit we compared the performance of three outlier filtering approaches (based on Principal Component Analysis, linear correlation and total spectral intensity) already separately discussed in the LIBS literature. The truncated data set was classified using Soft Independent Modelling of Class Analogies (SIMCA). Yielded results showed significant improvement in the performance of multivariate classification coupled to filtered data. The best performance was observed for the total spectral intensity filtering approach gaining the analytical figures of merit (overall accuracy, sensitivity, and specificity) over 98%. It is noteworthy that the results showed relatively low sensitivity and high specificity of the SIMCA algorithm regardless of the presence of outliers in the data sets. Moreover, it was shown that the variance in the data topology of training and testing data sets has a great impact on the consequent data classification.
Návaznosti
LQ1601, projekt VaV |
|