2016
On the Complexity Landscape of Connected f-Factor Problems
GANIAN, Robert; N. S. NARAYANASWAMY; Sebastian ORDYNIAK; C. S. RAHUL; M. S. RAMANUJAN et. al.Základní údaje
Originální název
On the Complexity Landscape of Connected f-Factor Problems
Autoři
GANIAN, Robert; N. S. NARAYANASWAMY; Sebastian ORDYNIAK; C. S. RAHUL a M. S. RAMANUJAN
Vydání
Germany, 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, od s. "41:1"-"41:14", 14 s. 2016
Nakladatel
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/16:00093949
Organizační jednotka
Fakulta informatiky
ISBN
978-3-95977-016-3
ISSN
EID Scopus
2-s2.0-85012914012
Klíčová slova anglicky
algorithms; vertex deletion problems
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 5. 2017 04:21, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Given an n-vertex graph G and a function f:V(G) -> {0, ..., n-1}, an f-factor is a subgraph H of G such that deg_H(v)=f(v) for every vertex v in V(G); we say that H is a connected f-factor if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connected f-factor is easily seen to generalize Hamiltonian Cycle and hence is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when f(v) is at least n^epsilon for each vertex v and epsilon<1; on the other side of the spectrum, the problem was known to be polynomial-time solvable when f(v) is at least n/3 for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restricting the function f. In particular, we show that when f(v) is required to be at least n/(log n)^c, the problem can be solved in quasi-polynomial time in general and in randomized polynomial time if c <= 1. We also show that when c>1, the problem is NP-intermediate.