D 2016

On the Complexity Landscape of Connected f-Factor Problems

GANIAN, Robert; N. S. NARAYANASWAMY; Sebastian ORDYNIAK; C. S. RAHUL; M. S. RAMANUJAN et. al.

Základní údaje

Originální název

On the Complexity Landscape of Connected f-Factor Problems

Autoři

GANIAN, Robert; N. S. NARAYANASWAMY; Sebastian ORDYNIAK; C. S. RAHUL a M. S. RAMANUJAN

Vydání

Germany, 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, od s. "41:1"-"41:14", 14 s. 2016

Nakladatel

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Kód RIV

RIV/00216224:14330/16:00093949

Organizační jednotka

Fakulta informatiky

ISBN

978-3-95977-016-3

ISSN

EID Scopus

2-s2.0-85012914012

Klíčová slova anglicky

algorithms; vertex deletion problems

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 12. 5. 2017 04:21, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

Given an n-vertex graph G and a function f:V(G) -> {0, ..., n-1}, an f-factor is a subgraph H of G such that deg_H(v)=f(v) for every vertex v in V(G); we say that H is a connected f-factor if, in addition, the subgraph H is connected. A classical result of Tutte (1954) is the polynomial time algorithm to check whether a given graph has a specified f-factor. However, checking for the presence of a connected f-factor is easily seen to generalize Hamiltonian Cycle and hence is NP-complete. In fact, the Connected f-Factor problem remains NP-complete even when f(v) is at least n^epsilon for each vertex v and epsilon<1; on the other side of the spectrum, the problem was known to be polynomial-time solvable when f(v) is at least n/3 for every vertex v. In this paper, we extend this line of work and obtain new complexity results based on restricting the function f. In particular, we show that when f(v) is required to be at least n/(log n)^c, the problem can be solved in quasi-polynomial time in general and in randomized polynomial time if c <= 1. We also show that when c>1, the problem is NP-intermediate.