J 2016

Flat (2,3,5)-Distributions and Chazy's Equations

RANDALL, Matthew James

Základní údaje

Originální název

Flat (2,3,5)-Distributions and Chazy's Equations

Autoři

RANDALL, Matthew James

Vydání

Symmetry, Integrability and Geometry: Methods and Applications, Department of Applied Research, Institute of Mathematics of National Academy of Science of Ukraine, 2016, 1815-0659

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Ukrajina

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 0.765

Kód RIV

RIV/00216224:14310/16:00088799

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000374454900001

EID Scopus

2-s2.0-84961589860

Klíčová slova anglicky

generic rank two distribution in dimension five; conformal geometry; Chazy's equations.

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 27. 3. 2017 11:59, doc. Mgr. Josef Šilhan, Ph.D.

Anotace

V originále

In the geometry of generic 2-plane fields on 5-manifolds, the local equivalence problem was solved by Cartan who also constructed the fundamental curvature invariant. For generic 2-plane fields or (2,3,5)-distributions determined by a single function of the form F(q), the vanishing condition for the curvature invariant is given by a 6th order nonlinear ODE. Furthermore, An and Nurowski showed that this ODE is the Legendre transform of the 7th order nonlinear ODE described in Dunajski and Sokolov. We show that the 6th order ODE can be reduced to a 3rd order nonlinear ODE that is a generalised Chazy equation. The 7th order ODE can similarly be reduced to another generalised Chazy equation, which has its Chazy parameter given by the reciprocal of the former. As a consequence of solving the related generalised Chazy equations, we obtain additional examples of flat (2,3,5)-distributions not of the form F(q)=qm. We also give 4-dimensional split signature metrics where their twistor distributions via the An-Nurowski construction have split G2 as their group of symmetries.

Návaznosti

GBP201/12/G028, projekt VaV
Název: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku
Investor: Grantová agentura ČR, Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku