2017
Predicting Data Quality Success - The Bullwhip Effect in Data Quality
GE, Mouzhi, Markus HELFERT a Tony O'BRIENZákladní údaje
Originální název
Predicting Data Quality Success - The Bullwhip Effect in Data Quality
Autoři
GE, Mouzhi (156 Čína, garant, domácí), Markus HELFERT (276 Německo) a Tony O'BRIEN (826 Velká Británie a Severní Irsko)
Vydání
Copenhagen, Denmark, Proceedings of the 16th International Conference on Perspectives in Business Informatics Research, od s. 157-165, 9 s. 2017
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Dánsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/17:00096703
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-64929-0
ISSN
Klíčová slova anglicky
Data quality; Bullwhip effect; Data quality success; Supply chain; Data quality improvement
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 2. 2018 14:09, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Over the last years many data quality initiatives and suggestions report how to improve and sustain data quality. However, almost all data quality projects and suggestions focus on the assessment and one-time quality improvement, especially, suggestions rarely include how to sustain the continuous data quality improvement. Inspired by the work related to variability in supply chains, also known as the Bullwhip effect, this paper aims to suggest how to sustain data quality improvements and investigate the effects of delays in reporting data quality indicators. Furthermore, we propose that a data quality prediction model can be used as one of countermeasures to reduce the Data Quality Bullwhip Effect. Based on a real-world case study, this paper makes an attempt to show how to reduce this effect. Our results indicate that data quality success is a critical practice, and predicting data quality improvements can be used to decrease the variability of the data quality index in a long run.