KREPL, Miroslav, Markus BLATTER, Antoine CLERY, Fred F DAMBERGER, Frederic H T ALLAIN a Jiří ŠPONER. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic acids research. Oxford University Press, 2017. ISSN 1362-4962. Dostupné z: https://dx.doi.org/10.1093/nar/gkx418.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition.
Autoři KREPL, Miroslav, Markus BLATTER, Antoine CLERY, Fred F DAMBERGER, Frederic H T ALLAIN a Jiří ŠPONER.
Vydání Nucleic acids research, Oxford University Press, 2017, 1362-4962.
Další údaje
Typ výsledku Článek v odborném periodiku
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 11.561
Doi http://dx.doi.org/10.1093/nar/gkx418
UT WoS 000406776400049
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnil: RNDr. Miroslav Krepl, Ph.D., učo 324182. Změněno: 8. 6. 2017 16:44.
Anotace
The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 A X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.
VytisknoutZobrazeno: 22. 9. 2024 10:14