2017
Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition.
KREPL, Miroslav; Markus BLATTER; Antoine CLERY; Fred F DAMBERGER; Frederic H T ALLAIN et. al.Základní údaje
Originální název
Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition.
Autoři
KREPL, Miroslav; Markus BLATTER; Antoine CLERY; Fred F DAMBERGER; Frederic H T ALLAIN a Jiří ŠPONER
Vydání
Nucleic acids research, Oxford University Press, 2017, 1362-4962
Další údaje
Typ výsledku
Článek v odborném periodiku
Utajení
není předmětem státního či obchodního tajemství
Odkazy
UT WoS
000406776400049
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 6. 2017 16:44, RNDr. Miroslav Krepl, Ph.D.
Anotace
V originále
The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 A X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes.