2017
Image-driven Stochastic Identification of Boundary Conditions for Predictive Simulation
PETERLÍK, Igor; Nazim HAOUCHINE; Lukáš RUČKA a Stéphane COTINZákladní údaje
Originální název
Image-driven Stochastic Identification of Boundary Conditions for Predictive Simulation
Autoři
PETERLÍK, Igor (703 Slovensko, garant); Nazim HAOUCHINE (12 Alžírsko); Lukáš RUČKA (203 Česká republika, domácí) a Stéphane COTIN (250 Francie)
Vydání
Cham, Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II, od s. 548-556, 9 s. 2017
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/17:00097947
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-66184-1
ISSN
EID Scopus
2-s2.0-85029470491
Klíčová slova anglicky
Boundary conditions Stochasric data assimilation Finite element method Surgical augmented reality Hepatic surgery
Změněno: 17. 5. 2018 16:44, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In computer-aided interventions, biomechanical models reconstructed from the pre-operative data are used via augmented reality to facilitate the intra-operative navigation. The predictive power of such models highly depends on the knowledge of boundary conditions. However, in the context of patient-specific modeling, neither the pre-operative nor the intra-operative modalities provide a reliable information about the location and mechanical properties of the organ attachments. We present a novel image-driven method for fast identification of boundary conditions which are modelled as stochastic parameters. The method employs the reduced-order unscented Kalman filter to transform in real-time the probability distributions of the parameters, given observations extracted from intra-operative images. The method is evaluated using synthetic, phantom and real data acquired in vivo on a porcine liver. A quantitative assessment is presented and it is shown that the method significantly increases the predictive power of the biomechanical model.
Návaznosti
MUNI/A/0897/2016, interní kód MU |
|