2017
Investigating Community Detection Algorithms and their Capacity as Markers of Brain Diseases
VÝTVAROVÁ, Eva, Jan FOUSEK, Michal MIKL, Irena REKTOROVÁ, Eva HLADKÁ et. al.Základní údaje
Originální název
Investigating Community Detection Algorithms and their Capacity as Markers of Brain Diseases
Autoři
VÝTVAROVÁ, Eva (203 Česká republika, domácí), Jan FOUSEK (203 Česká republika, domácí), Michal MIKL (203 Česká republika, domácí), Irena REKTOROVÁ (203 Česká republika, domácí) a Eva HLADKÁ (203 Česká republika, domácí)
Vydání
Taipei; Taiwan, International Symposium on Grids and Clouds (ISGC) 2017. Academia Sinica, Taipei, Taiwan: Proceedings of Science, od s. 1-14, 14 s. 2017
Nakladatel
Sissa Medialab Srl
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Itálie
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/17:00098154
Organizační jednotka
Fakulta informatiky
ISSN
Klíčová slova anglicky
Classification (of information); Optimization; Population dynamics; Random variables
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 5. 2018 06:40, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In this paper, we present a workflow for evaluating resting-state brain functional connectivity with different community detection algorithms and their strengths to discriminate between health and Parkinson’s disease (PD) and mild cognitive impairment preceding Alzheimer’s disease (ADMCI). We further analyze the complexity of particular pipeline steps aiming to provide guidelines for both execution on computing infrastructure and further optimization efforts. On a dataset of 50 controls and 70 patients we measured an increased modularity coefficient with 81.8% accuracy of classifying PD versus controls and 76.2% accuracy of classifying ADMCI versus controls. Significantly higher modularity coefficient values were measured when the random matrix theory decomposition was adapted for network construction. These results were observed on networks of 82 nodes based on AAL atlas and 317 nodes based on multimodal parcellation atlas.
Návaznosti
MUNI/A/0897/2016, interní kód MU |
|