2019
Binary Sketches for Secondary Filtering
MÍČ, Vladimír, David NOVÁK a Pavel ZEZULAZákladní údaje
Originální název
Binary Sketches for Secondary Filtering
Autoři
MÍČ, Vladimír (203 Česká republika, domácí), David NOVÁK (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, garant, domácí)
Vydání
ACM Transactions on Information Systems, New York, ACM Press, 2019, 1046-8188
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.889
Kód RIV
RIV/00216224:14330/19:00107167
Organizační jednotka
Fakulta informatiky
UT WoS
000457519000001
Klíčová slova anglicky
Top-k retrieval in databases;Retrieval efficiency;Retrieval effectiveness;Similarity measures;
Změněno: 13. 4. 2020 23:22, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
This paper addresses the problem of matching the most similar data objects to a given query object. We adopt a generic model of similarity that involves the domain of objects and metric distance functions only. We examine the case of a large dataset in a complex data space which makes this problem inherently difficult. Many indexing and searching approaches have been proposed but they have often failed to efficiently prune complex search spaces and access large portions of the dataset when evaluating queries. We propose an approach to enhancing the existing search techniques so as to significantly reduce the number of accessed data objects while preserving the quality of the search results. In particular, we extend each data object with its sketch, a short binary string in Hamming space. These sketches approximate the similarity relationships in the original search space, and we use them to filter out non-relevant objects not pruned by the original search technique. We provide a probabilistic model to tune the parameters of the sketch-based filtering separately for each query object. Experiments conducted with different similarity search techniques and real-life datasets demonstrate that the secondary filtering can speed-up similarity search several times.
Návaznosti
GBP103/12/G084, projekt VaV |
|