2016
Fast multipole and space adaptive multiresolution methods for the solution of the Poisson equation
BÍLEK, Petr, Max DUARTE, David NEČAS, Anne BOURDON, Zdeněk BONAVENTURA et. al.Základní údaje
Originální název
Fast multipole and space adaptive multiresolution methods for the solution of the Poisson equation
Název česky
Řešení Poissonovy rovnice použitím kombinace rychlé multipólové metody a prostorově adaptivní metody multiresolution
Název anglicky
Fast multipole and space adaptive multiresolution methods for the solution of the Poisson equation
Autoři
BÍLEK, Petr, Max DUARTE, David NEČAS, Anne BOURDON a Zdeněk BONAVENTURA
Vydání
69th Annual Gaseous Electronics Conference, 2016
Další údaje
Typ výsledku
Konferenční abstrakt
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Klíčová slova česky
Poissonova rovnice, metoda multiresolution, adaptovaný grid, rychlá multipólová metoda, multipólový rozvoj, potenciál, streamery
Klíčová slova anglicky
Poisson equation, multiresolution method, adaptive grid, fast multipole method, multipole expansion, potential, streamers
Změněno: 28. 8. 2018 10:31, Mgr. Petr Bílek, Ph.D.
Anotace
V originále
This work focuses on the conjunction of the fast multipole method (FMM) with the space adaptive multiresolution (MR) technique for grid adaptation. Since both methods, MR and FMM provide a priori error estimates, both achieve O(N) computational complexity, and both operate on the same hierarchical space division, their conjunction represents a natural choice when designing a numerically efficient and robust strategy for time dependent problems. Special attention is given to the use of these methods in the simulation of streamer discharges in air. We have designed a FMM Poisson solver on multiresolution adapted grid in 2D. The accuracy and the computation complexity of the solver has been verified for a set of manufactured solutions. We confirmed that the developed solver attains desired accuracy and this accuracy is controlled only by the number of terms in the multipole expansion in combination with the multiresolution accuracy tolerance. The implementation has a linear computation complexity O(N).