J 2015

Elliptic equations with nonlinear absorption depending on the solution and its gradient

MARCUS, Moshe a Phuoc-Tai NGUYEN

Základní údaje

Originální název

Elliptic equations with nonlinear absorption depending on the solution and its gradient

Autoři

MARCUS, Moshe a Phuoc-Tai NGUYEN

Vydání

Proceedings of the London Mathematical Society, England, Oxford University Press, 2015, 0024-6115

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.079

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000359643300007

Klíčová slova anglicky

quasilinear equations;boundary singularities;Radon measures;Borel measures;weak singularities;strong singularities;boundary trace;removability

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 2. 5. 2019 15:53, Mgr. Tereza Miškechová

Anotace

V originále

We study positive solutions of equation (E1) -Delta u + u(p)vertical bar del u vertical bar(q) = 0 (0 <= p, 0 <= q <= 2, p + q > 1) and (E-2) -Delta u + u(p) + vertical bar Delta u vertical bar(q) = 0 (p > 1, 1 < q <= 2) in a smooth bounded domain Omega subset of R-N. We obtain a sharp condition on p and q under which, for every positive, finite Borel measure mu on partial derivative Omega, there exists a solution such that u = mu on partial derivative Omega. Furthermore, if the condition mentioned above fails, then any isolated point singularity on partial derivative Omega is removable, namely, there is no positive solution that vanishes on partial derivative Omega everywhere except at one point. With respect to (E2), we also prove uniqueness and discuss solutions that blow up on a compact subset of partial derivative Omega. In both cases, we obtain a classification of positive solutions with an isolated boundary singularity. Finally, in Appendix A a uniqueness result for a class of quasilinear equations is provided. This class includes (E1) when p = 0 but not the general case.