2015
Elliptic equations with nonlinear absorption depending on the solution and its gradient
MARCUS, Moshe a Phuoc-Tai NGUYENZákladní údaje
Originální název
Elliptic equations with nonlinear absorption depending on the solution and its gradient
Autoři
MARCUS, Moshe a Phuoc-Tai NGUYEN
Vydání
Proceedings of the London Mathematical Society, England, Oxford University Press, 2015, 0024-6115
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.079
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000359643300007
Klíčová slova anglicky
quasilinear equations;boundary singularities;Radon measures;Borel measures;weak singularities;strong singularities;boundary trace;removability
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 2. 5. 2019 15:53, Mgr. Tereza Miškechová
Anotace
V originále
We study positive solutions of equation (E1) -Delta u + u(p)vertical bar del u vertical bar(q) = 0 (0 <= p, 0 <= q <= 2, p + q > 1) and (E-2) -Delta u + u(p) + vertical bar Delta u vertical bar(q) = 0 (p > 1, 1 < q <= 2) in a smooth bounded domain Omega subset of R-N. We obtain a sharp condition on p and q under which, for every positive, finite Borel measure mu on partial derivative Omega, there exists a solution such that u = mu on partial derivative Omega. Furthermore, if the condition mentioned above fails, then any isolated point singularity on partial derivative Omega is removable, namely, there is no positive solution that vanishes on partial derivative Omega everywhere except at one point. With respect to (E2), we also prove uniqueness and discuss solutions that blow up on a compact subset of partial derivative Omega. In both cases, we obtain a classification of positive solutions with an isolated boundary singularity. Finally, in Appendix A a uniqueness result for a class of quasilinear equations is provided. This class includes (E1) when p = 0 but not the general case.