ALEKSEEVSKIY, Dmitry, Alexandr MEDVEDEV a Jan SLOVÁK. Constant curvature models in sub-Riemannian geometry. Journal of Geometry and Physics. Amsterdam: Elsevier Science BV, 2019, roč. 138, April, s. 241-256. ISSN 0393-0440. doi:10.1016/j.geomphys.2018.09.013. |
Další formáty:
BibTeX
LaTeX
RIS
@article{1471621, author = {Alekseevskiy, Dmitry and Medvedev, Alexandr and Slovák, Jan}, article_location = {Amsterdam}, article_number = {April}, doi = {http://dx.doi.org/10.1016/j.geomphys.2018.09.013}, keywords = {Curvature; SubRiemannian geometry; Lie algebra cohomology; Constant curvature spaces}, language = {eng}, issn = {0393-0440}, journal = {Journal of Geometry and Physics}, title = {Constant curvature models in sub-Riemannian geometry}, url = {https://doi.org/10.1016/j.geomphys.2018.09.013}, volume = {138}, year = {2019} }
TY - JOUR ID - 1471621 AU - Alekseevskiy, Dmitry - Medvedev, Alexandr - Slovák, Jan PY - 2019 TI - Constant curvature models in sub-Riemannian geometry JF - Journal of Geometry and Physics VL - 138 IS - April SP - 241-256 EP - 241-256 PB - Elsevier Science BV SN - 03930440 KW - Curvature KW - SubRiemannian geometry KW - Lie algebra cohomology KW - Constant curvature spaces UR - https://doi.org/10.1016/j.geomphys.2018.09.013 L2 - https://doi.org/10.1016/j.geomphys.2018.09.013 N2 - Each sub-Riemannian geometry with bracket generating distribution enjoys a background structure determined by the distribution itself. At the same time, those geometries with constant sub-Riemannian symbols determine a unique Cartan connection leading to their principal invariants. We provide cohomological description of the structure of these curvature invariants in the cases where the background structure is one of the parabolic geometries. As an illustration, constant curvature models are discussed for certain sub-Riemannian geometries. ER -
ALEKSEEVSKIY, Dmitry, Alexandr MEDVEDEV a Jan SLOVÁK. Constant curvature models in sub-Riemannian geometry. \textit{Journal of Geometry and Physics}. Amsterdam: Elsevier Science BV, 2019, roč.~138, April, s.~241-256. ISSN~0393-0440. doi:10.1016/j.geomphys.2018.09.013.
|