2018
A Simpler Self-reduction Algorithm for Matroid Path-width
HLINĚNÝ, PetrZákladní údaje
Originální název
A Simpler Self-reduction Algorithm for Matroid Path-width
Autoři
HLINĚNÝ, Petr (203 Česká republika, garant, domácí)
Vydání
SIAM Journal on Discrete Mathematics, Philadelphia, SIAM, 2018, 0895-4801
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 0.843
Kód RIV
RIV/00216224:14330/18:00101457
Organizační jednotka
Fakulta informatiky
UT WoS
000436975900037
Klíčová slova anglicky
matroid; path-width; trellis-width; fixed-parameter tractability; well-quasi-ordering
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 4. 2020 09:52, prof. RNDr. Petr Hliněný, Ph.D.
V originále
The path-width of matroids naturally generalizes the better known parameter of path-width for graphs and is NP-hard by a reduction from the graph case. While the term matroid path-width was formally introduced in [J. Geelen, B. Gerards, and G. Whittle, J. Combin. Theory Ser. B, 96 (2006), pp. 405-425] in pure matroid theory, it was soon recognized in [N. Kashyap, SIAM J. Discrete Math., 22 (2008), pp. 256-272] that it is the same concept as the long-studied so-called trellis complexity in coding theory, later named trellis-width, and hence it is an interesting notion also from the algorithmic perspective. It follows from a result of Hlineny [P. Hlieny, J. Combin. Theory Ser. B, 96 (2006), pp. 325-351] that the decision problem-whether a given matroid over a finite field has path-width at most t-is fixed-parameter tractable (FPT) in t, but this result does not give any clue about constructing a path-decomposition. The first constructive and rather complicated FPT algorithm for path-width of matroids over a finite field was given in [J. Jeong, E. J. Kim, and S. Oum, in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2016, pp. 1695-1704]. Here we propose a simpler "self-reduction" FPT algorithm for a path-decomposition. Precisely, we design an efficient routine that constructs an optimal pathdecomposition of a matroid by calling any subroutine for testing whether the path-width of a matroid is at most t (such as the aforementioned decision algorithm for matroid path-width).
Česky
Podáváme jednodušší self-redukční algoritmus pro výpočet optimální path-dekompozice daného matroidu nad konečným tělesem.
Návaznosti
GA17-00837S, projekt VaV |
|