2019
EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics
BRÁZDIL, Milan, Irena DOLEŽALOVÁ, Eva KORIŤÁKOVÁ, Jan CHLÁDEK, Robert ROMAN et. al.Základní údaje
Originální název
EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics
Autoři
BRÁZDIL, Milan (203 Česká republika, garant, domácí), Irena DOLEŽALOVÁ (203 Česká republika, domácí), Eva KORIŤÁKOVÁ (203 Česká republika, domácí), Jan CHLÁDEK (203 Česká republika, domácí), Robert ROMAN (203 Česká republika, domácí), Martin PAIL (203 Česká republika, domácí), Pavel JURAK (203 Česká republika), Daniel Joel SHAW (826 Velká Británie a Severní Irsko, domácí) a Jan CHRASTINA (203 Česká republika, domácí)
Vydání
FRONTIERS IN NEUROLOGY, LAUSANNE, FRONTIERS MEDIA SA, 2019, 1664-2295
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30210 Clinical neurology
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.889
Kód RIV
RIV/00216224:14110/19:00108497
Organizační jednotka
Lékařská fakulta
UT WoS
000466518800001
Klíčová slova anglicky
vagal nerve stimulation; neurostimulation; epilepsy; efficacy prediction; EEG reactivity; epilepsy treatment
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 5. 2020 13:04, Mgr. Tereza Miškechová
Anotace
V originále
Background: Chronic vagal nerve stimulation (VNS) is a well-established non-pharmacological treatment option for drug-resistant epilepsy. This study sought to develop a statistical model for prediction of VNS efficacy. We hypothesized that reactivity of the electroencephalogram (EEG) to external stimuli measured during routine preoperative evaluation differs between VNS responders and non-responders. Materials and Methods: Power spectral analyses were computed retrospectively on pre-operative EEG recordings from 60 epileptic patients with VNS. Thirty five responders and 25 non-responders were compared on the relative power values in four standard frequency bands and eight conditions of clinical assessment-eyes opening/closing, photic stimulation, and hyperventilation. Using logistic regression, groups of electrodes within anatomical areas identified as maximally discriminative by n leave-one-out iterations were used to classify patients. The reliability of the predictive model was verified with an independent data-set from 22 additional patients. Results: Power spectral analyses revealed significant differences in EEG reactivity between responders and non-responders; specifically, the dynamics of alpha and gamma activity strongly reflected VNS efficacy. Using individual EEG reactivity to develop and validate a predictive model, we discriminated between responders and non-responders with 86% accuracy, 83% sensitivity, and 90% specificity. Conclusion: We present a new statistical model with which EEG reactivity to external stimuli during routine presurgical evaluation can be seen as a promising avenue for the identification of patients with favorable VNS outcome. This novel method for the prediction of VNS efficacy might represent a breakthrough in the management of drug-resistant epilepsy, with wide-reaching medical and economic implications.
Návaznosti
LQ1601, projekt VaV |
| ||
NV19-04-00343, projekt VaV |
|