J 2019

Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio)

CAO, Fangjie, Christopher L. SOUDERS, Pengfei LI, Ondřej ADAMOVSKÝ, Sen PANG et. al.

Basic information

Original name

Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio)

Authors

CAO, Fangjie (156 China), Christopher L. SOUDERS (840 United States of America), Pengfei LI (156 China), Ondřej ADAMOVSKÝ (203 Czech Republic, guarantor, belonging to the institution), Sen PANG (156 China), Lihong QIU (156 China) and Christopher J. MARTYNIUK (840 United States of America)

Edition

Chemosphere, OXFORD, PERGAMON-ELSEVIER SCIENCE LTD, 2019, 0045-6535

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10511 Environmental sciences

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 5.778

RIV identification code

RIV/00216224:14310/19:00110370

Organization unit

Faculty of Science

UT WoS

000449891300035

Keywords in English

Ziram; Zebrafish embryos; Mitochondrial bioenergetics; Dark/light preference; Gene expression; Dopamine system

Tags

Tags

International impact, Reviewed
Změněno: 24/3/2020 09:39, Mgr. Marie Šípková, DiS.

Abstract

V originále

Ziram is a broad spectrum pesticide that belongs to the class of dimethyl-dithiocarbamate (DTC) fungicides. The objectives of this study were to assess the effects of ziram in developing zebrafish. Ziram was highly toxic to zebrafish embryos, with a 96-h LC50 value of 1082.54 nM (similar to 0.33 mg/L). Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to solvent control (0.1% DMSO), or one dose of 1, 10, 100, and 1000 nM ziram for 96 h. Ziram induced lethality in a dose-dependent manner, decreased hatching rate and heartbeat, and caused wavy deformities at 72 and 96 hpf at 100 and 1000 nM. Basal oxygen consumption rates of zebrafish at 24 hpf were decreased with 1000 nM, suggesting that ziram affects oxidative phosphorylation. We also measured the expression of transcripts associated with the oxidative stress response (sod] and sod2) and dopamine receptor signaling at similar to 96 h of exposure. There was no difference in the expression of genes related to oxidative stress, nor those related to the dopamine system. Locomotor activity was also assessed in larval zebrafish (7 dpf), and ziram increased total activity, the velocity in light zone, and total distance moved at 10 nM, while it decreased the mean time spent in the dark zone at 1 and 10 nM. Behavioral responses were dependent upon the time point and clutch examined. These data demonstrate that ziram negatively impacts embryonic development (i.e. mortality, hatching, heartbeat and notochord development) of zebrafish, decreases basal respiration of embryos, and alters behavioral responses in larvae.