2019
Resolving the temporal evolution of line broadening in single quantum emitters
SCHIMPF, Christian; Marcus REINDL; Petr KLENOVSKÝ; Thomas FROMHERZ; Saimon F. Covre DA SILVA et. al.Základní údaje
Originální název
Resolving the temporal evolution of line broadening in single quantum emitters
Autoři
SCHIMPF, Christian (40 Rakousko); Marcus REINDL (40 Rakousko); Petr KLENOVSKÝ (203 Česká republika, garant, domácí); Thomas FROMHERZ (40 Rakousko); Saimon F. Covre DA SILVA (40 Rakousko); Julian HOFER (276 Německo); Christian SCHNEIDER (276 Německo); Sven HOEFLING (276 Německo); Rinaldo TROTTA (380 Itálie) a Armando RASTELLI (380 Itálie)
Vydání
Optics Express, 2019, 1094-4087
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10306 Optics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.669
Kód RIV
RIV/00216224:14310/19:00111388
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000603035500064
EID Scopus
2-s2.0-85075777509
Klíčová slova anglicky
Resolving spectral resolution to Fourier limit;Photon correlated Fourier spectroscopy;Quantum dot
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 1. 2021 11:45, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Light emission from solid-state quantum emitters is inherently prone to environmental decoherence, which results in a line broadening and in the deterioration of photon indistinguishability. ere we employ photon correlation Fourier spectroscopy (PCFS) to study the temporal evolution of such a broadening in two prominent systems: GaAs and In(Ga)As quantum dots. Differently from previous experiments, the emitters are driven with short laser pulses as required for the generation of high-purity single photons, the time scales we probe range from a few nanoseconds to milliseconds and, simultaneously, the spectral resolution we achieve can be as small as ~2µeV. We find pronounced differences in the temporal evolution of different optical transition lines, which we attribute to differences in their homogeneous linewidth and sensitivity to charge noise. We analyze the effect of irradiation with additional white light, which reduces blinking at the cost of enhanced charge noise. Due to its robustness against experimental imperfections and its high temporal resolution and bandwidth, PCFS outperforms established spectroscopy techniques, such as Michelson interferometry. We discuss its practical implementation and the possibility to use it to estimate the indistinguishability of consecutively emitted single photons for applications in quantum communication and photonic-based quantum information processing.
Návaznosti
LQ1601, projekt VaV |
| ||
7AMB17AT044, projekt VaV |
| ||
8C18001, projekt VaV |
|