2020
Improved bounds for centered colorings
DĘBSKI, Michał Karol; Stefan FELSNER; Piotr MICEK a Felix SCHRÖDERZákladní údaje
Originální název
Improved bounds for centered colorings
Autoři
DĘBSKI, Michał Karol; Stefan FELSNER; Piotr MICEK a Felix SCHRÖDER
Vydání
Not specified, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, od s. 2212-2226, 15 s. 2020
Nakladatel
SIAM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/20:00115527
Organizační jednotka
Fakulta informatiky
ISBN
978-1-61197-599-4
UT WoS
000554408102017
EID Scopus
2-s2.0-85084076155
Klíčová slova anglicky
centered coloring; bounded expansion; planar graph; entropy compression
Změněno: 14. 6. 2022 13:54, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
A vertex coloring c of a graph G is p-centered if for every connected subgraph H of G either c uses more than p colors on H or there is a color that appears exactly once on H Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function f such that for every p >= 1, every graph in the class admits a p-centered coloring using at most f(p) colors. In this paper, we give upper bounds for the maximum number of colors needed in a p-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit p-centered colorings with O(p^3 log p) colors where the previous bound was O(p^19); (2) bounded degree graphs admit p-centered colorings with O(p) colors while it was conjectured that they may require exponential number of colors in p; (3) graphs avoiding a fixed graph as a topological minor admit p-centered colorings with a polynomial in p number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth t that require (p+t choose t) colors in any p-centered coloring and this bound matches the upper bound; (5) there are planar graphs that require Omega(p^2 log p) colors in any p-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth 3. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.
Návaznosti
| EF16_027/0008360, projekt VaV |
|