2019
SAT-Encodings for Treecut Width and Treedepth
GANIAN, Robert; Neha LODHA; Sebastian ORDYNIAK a Stefan SZEIDERZákladní údaje
Originální název
SAT-Encodings for Treecut Width and Treedepth
Autoři
GANIAN, Robert; Neha LODHA; Sebastian ORDYNIAK a Stefan SZEIDER
Vydání
USA, ALENEX 2019, od s. 117-129, 13 s. 2019
Nakladatel
SIAM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/19:00113720
Organizační jednotka
Fakulta informatiky
ISBN
978-1-61197-549-9
ISSN
EID Scopus
2-s2.0-85065174173
Klíčová slova anglicky
Parameterized Complexity
Změněno: 14. 5. 2020 10:43, Mgr. Michal Petr
Anotace
V originále
The decomposition of graphs is a prominent algorithmic task with numerous applications in computer science. A graph decomposition method is typically associated with a width parameter (such as treewidth) that indicates how well the given graph can be decomposed. Many hard (even #P-hard) algorithmic problems can be solved efficiently if a decomposition of small width is provided; the runtime, however, typically depends exponentially on the decomposition width. Finding an optimal decomposition is itself an NP-hard task. In this paper we propose, implement, and test the first practical decomposition algorithms for the width parameters tree-cut width and treedepth. These two parameters have recently gained a lot of attention in the theoretical research community as they offer the algorithmic advantage over treewidth by supporting so-called fixed-parameter algorithms for certain problems that are not fixed-parameter tractable with respect to treewidth. However, the existing research has mostly been theoretical. A main obstacle for any practical or experimental use of these two width parameters is the lack of any practical or implemented algorithm for actually computing the associated decompositions. We address this obstacle by providing the first practical decomposition algorithms.