J 2010

MODELING PROCESS DYNAMICS USING A NOVEL NEURAL NETWORK ARCHITECTURE: APPLICATION TO STIRRED CELL MICROFILTRATION

MHURCHU, Jenny Ni, Greg FOLEY a Josef HAVEL

Základní údaje

Originální název

MODELING PROCESS DYNAMICS USING A NOVEL NEURAL NETWORK ARCHITECTURE: APPLICATION TO STIRRED CELL MICROFILTRATION

Autoři

MHURCHU, Jenny Ni, Greg FOLEY (garant) a Josef HAVEL (203 Česká republika, domácí)

Vydání

CHEMICAL ENGINEERING COMMUNICATIONS, TAYLOR & FRANCIS INC, 2010, 0098-6445

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10400 1.4 Chemical sciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 0.913

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000277461700008

Klíčová slova anglicky

Artificial neural network; Dynamic modeling; Flux; Fouling; Stirred cell microfiltration

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 20. 8. 2020 11:18, Mgr. Marie Šípková, DiS.

Anotace

V originále

A novel neural network architecture is presented for dynamic process modeling, using stirred cell microfiltration of bentonite suspensions as a model system. Unlike previous studies that include time explicitly as a network input and have a single output at that time, the network architecture presented contains the process variables as inputs and many outputs representing the output (filtrate flux in this case) at different selected times. The network is shown to represent the stirred cell microfiltration of bentonite suspensions over a range of pressures (0.2-1.5bar), initial concentrations (0.5-2.0g/L), stirrer tip speeds (0.04-0.17m/s), membrane resistances (3.09x1010-6.85x1010m-1), pH values (2.5-10.4), and temperatures (20 degrees-24 degrees C) with good accuracy (R2=0.91 on network test data). With this network architecture, it becomes easy to track the time dependence of the relative effect of the various process parameters on the system output. Thus, for example, the network weights show that the effect of stirring rate on flux increases as time progresses, while the opposite effect is seen for membrane resistance, as expected.