J 2020

The fractional and mixed-fractional CEV model

ARANEDA, Axel Alejandro

Základní údaje

Originální název

The fractional and mixed-fractional CEV model

Vydání

Journal of Computational and Applied Mathematics, AMSTERDAM, Elsevier Science, 2020, 0377-0427

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 2.621

UT WoS

000488995600007

Klíčová slova anglicky

fBM; mfBm; CEV; Fractional Fokker-Planck; Fractional Ito's calculus; Feller's process
Změněno: 9. 9. 2020 08:55, Axel Alejandro Araneda Barahona, Ph.D.

Anotace

V originále

The continuous observation of the financial markets has identified some 'stylized facts' which challenge the conventional assumptions, promoting the born of new approaches. On the one hand, the long-range dependence has been faced replacing the traditional Gauss-Wiener process (Brownian motion), characterized by stationary independent increments, by a fractional version. On the other hand, the CEV model addresses the Leverage effect and smile-skew phenomena, efficiently. In this paper, these two insights are merging and both the fractional and mixed-fractional extensions for the CEV model, are developed. Using the fractional versions of both the Ito's calculus and the Fokker-Planck equation, the transition probability density function of the asset price is obtained as the solution of a non-stationary Feller process with time-varying coefficients, getting an analytical valuation formula for a European Call option. Besides, the Greeks are computed and compared with the standard case. (C) 2019 Elsevier B.V. All rights reserved.