2020
Entropy-controlled fully reversible nanostructure formation of Ge on miscut vicinal Si(001) surfaces
GROSSAUER, Christian; Václav HOLÝ a Gunther SPRINGHOLZZákladní údaje
Originální název
Entropy-controlled fully reversible nanostructure formation of Ge on miscut vicinal Si(001) surfaces
Autoři
GROSSAUER, Christian; Václav HOLÝ (203 Česká republika, domácí) a Gunther SPRINGHOLZ (garant)
Vydání
Physical Review B, College PK, The American Physical Society, 2020, 2469-9950
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10302 Condensed matter physics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.036
Kód RIV
RIV/00216224:14310/20:00116625
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000557726800009
EID Scopus
2-s2.0-85090124638
Klíčová slova anglicky
QUANTUM DOTS; SHAPE TRANSITION; SELF-ORGANIZATION; GROWTH; SINGLE; PYRAMIDS; ISLANDS; EPITAXY; STEPS; INAS/GAAS(001)
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 4. 2022 10:50, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
Entropy effects substantially modify the growth of self-assembled Ge nanostructures on vicinal Si(001) surfaces, on which one-dimensional nanowire-like structures are formed. As shown by variable temperature scanning tunneling microscopy, these nanostructures are not only tunable in size and shape, but can be fully reversibly erased and reformed without changes in sizes and composition. This unprecedented behavior is caused by the strong free surface energy renormalization due to the large step entropy of vicinal surfaces that strongly increases with increasing temperature. This favors a planar two-dimensional surface at higher temperatures in thermodynamic equilibrium, whereas the nanostructured surface is the preferred low-temperature configuration. Taking the step entropy into account, the critical transition temperature between these surface states derived by free-energy minimization is shown to scale nearly linearly with the Ge coverage-in excellent agreement with the experiments. Most importantly, the nanowire sizes are found to be deterministically controlled by the Ge thickness and vicinal angle, independently of the growth or annealing conditions. Thus, highly reproducible structures with tunable nanogeometries and -dimensions are obtained, which opens promising avenues for device applications.