2020
Symmetry of linear dielectric response tensors: Dispersion models fulfilling three fundamental conditions
FRANTA, DanielZákladní údaje
Originální název
Symmetry of linear dielectric response tensors: Dispersion models fulfilling three fundamental conditions
Autoři
FRANTA, Daniel (203 Česká republika, garant, domácí)
Vydání
Journal of applied physics, Melville, American Institute of Physics, 2020, 0021-8979
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10306 Optics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.546
Kód RIV
RIV/00216224:14310/20:00116683
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000540573200001
Klíčová slova anglicky
optical activity; sum rule
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 19. 10. 2020 16:30, Mgr. Marie Šípková, DiS.
Anotace
V originále
Physically correct dispersion models must fulfill three fundamental conditions (time-reversal symmetry, Kramers-Kronig consistency, and conformity with sum rules). The application of these conditions on systems exhibiting low crystal symmetry, spatial dispersion, and/or magneto-optic effects is a non-trivial task. The aim of this contribution is to present an approach using decomposition of dielectric tensors into a set of independent spectral functions. For the derivation, the most general case of anisotropic dielectric response with optical activity is considered. The contribution discusses both the natural optical activity exhibiting spatial dispersion and the local magneto-optic effect of rotation of the plane of polarization induced by the external magnetic field. If the response tensor is expressed up to the term linear in the direction of the wave vector, then its symmetry can be classified into 16 types. Formulas expressing each type of the dielectric tensor using independent spectral functions are presented (the most complex case with the lowest symmetry requires 15 spectral functions). The symmetry for different internal and external conditions is demonstrated with the help of several simple models based on solving the classical equations of motion. It is shown that interpreting free particles in the magnetic field as bound particles is not correct. Instead, the Landau levels in a non-dissipative system must be interpreted as splitting of diamagnetic part of the dielectric response, rather than energy of bound states. Published under license by AIP Publishing.
Návaznosti
LM2018097, projekt VaV |
|