2004
On feasible sets of mixed hypergraphs
KRÁĽ, DanielZákladní údaje
Originální název
On feasible sets of mixed hypergraphs
Autoři
Vydání
Electronic Journal of Combinatorics, Newark, USA, ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 1077-8926
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Utajení
není předmětem státního či obchodního tajemství
UT WoS
000220802600001
Klíčová slova anglicky
coloring of hypergraphs; mixed hypergraphs; algorithms for coloring
Změněno: 6. 11. 2020 12:29, Mgr. Darina Boukalová
Anotace
V originále
A mixed hypergraph H is a triple (V, C, D) where V is the vertex set and C and D are families of subsets of V, called C-edges and D-edges. A vertex coloring of H is proper if each C-edge contains two vertices with the same color and each D-edge contains two vertices with different colors. The spectrum of H is a vector (r(1),..., r(m)) such that there exist exactly r(i) different colorings using exactly i colors, r(m) greater than or equal to 1 and there is no coloring using more than m colors. The feasible set of H is the set of all i's such that r(i) not equal 0. We construct a mixed hypergraph with O(Sigma(i) log r(i)) vertices whose spectrum is equal to (r(1),..., r(m)) for each vector of non-negative integers with r(1) = 0. We further prove that for any fixed finite sets of positive integers A(1) subset of A(2) (1 is not an element of A(2)), it is NP-hard to decide whether the feasible set of a given mixed hypergraph is equal to A(2) even if it is promised that it is either A(1) or A(2). This fact has several interesting corollaries, e. g., that deciding whether a feasible set of a mixed hypergraph is gap-free is both NP-hard and coNP-hard.