J 2004

On feasible sets of mixed hypergraphs

KRÁĽ, Daniel

Základní údaje

Originální název

On feasible sets of mixed hypergraphs

Autoři

Vydání

Electronic Journal of Combinatorics, Newark, USA, ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 1077-8926

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Utajení

není předmětem státního či obchodního tajemství

UT WoS

000220802600001

Klíčová slova anglicky

coloring of hypergraphs; mixed hypergraphs; algorithms for coloring
Změněno: 6. 11. 2020 12:29, Mgr. Darina Boukalová

Anotace

V originále

A mixed hypergraph H is a triple (V, C, D) where V is the vertex set and C and D are families of subsets of V, called C-edges and D-edges. A vertex coloring of H is proper if each C-edge contains two vertices with the same color and each D-edge contains two vertices with different colors. The spectrum of H is a vector (r(1),..., r(m)) such that there exist exactly r(i) different colorings using exactly i colors, r(m) greater than or equal to 1 and there is no coloring using more than m colors. The feasible set of H is the set of all i's such that r(i) not equal 0. We construct a mixed hypergraph with O(Sigma(i) log r(i)) vertices whose spectrum is equal to (r(1),..., r(m)) for each vector of non-negative integers with r(1) = 0. We further prove that for any fixed finite sets of positive integers A(1) subset of A(2) (1 is not an element of A(2)), it is NP-hard to decide whether the feasible set of a given mixed hypergraph is equal to A(2) even if it is promised that it is either A(1) or A(2). This fact has several interesting corollaries, e. g., that deciding whether a feasible set of a mixed hypergraph is gap-free is both NP-hard and coNP-hard.