2020
Stellar wind models of central stars of planetary nebulae
KRTIČKA, Jiří, Jiří KUBÁT a Iva KRTIČKOVÁZákladní údaje
Originální název
Stellar wind models of central stars of planetary nebulae
Autoři
KRTIČKA, Jiří (203 Česká republika, garant, domácí), Jiří KUBÁT (203 Česká republika) a Iva KRTIČKOVÁ (203 Česká republika, domácí)
Vydání
Astronomy & Astrophysics, Les Ulis, EDP Sciences, 2020, 0004-6361
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Francie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.802
Kód RIV
RIV/00216224:14310/20:00114456
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000526658700001
Klíčová slova anglicky
stars: winds; outflows; stars: mass-loss; stars: early-type; stars: AGB and post-AGB; white dwarfs; planetary nebulae: general
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 11. 2020 15:24, Mgr. Marie Šípková, DiS.
Anotace
V originále
Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak.Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters.Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M-circle dot. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties.Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for T-eff approximate to 10 kK) and fade away at the white dwarf cooling track (below T-eff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung-Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about T-eff = 40-50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s(-1) to a few thousands of km s(-1) during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side.Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.
Návaznosti
GA18-05665S, projekt VaV |
| ||
LM2015085, projekt VaV |
|