FAHLMAN, Andreas, Bruno COZZI, Mercy MANLEY, Sandra JABAS, Marek MALÍK, Ashley BLAWAS a Vincent M. JANIK. Conditioned Variation in Heart Rate During Static Breath-Holds in the Bottlenose Dolphin (Tursiops truncatus). Frontiers in Physiology. Lausanne: Frontiers, 2020, roč. 11, NOV 2020, s. 1-11. ISSN 1664-042X. Dostupné z: https://dx.doi.org/10.3389/fphys.2020.604018.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Conditioned Variation in Heart Rate During Static Breath-Holds in the Bottlenose Dolphin (Tursiops truncatus)
Autoři FAHLMAN, Andreas (garant), Bruno COZZI, Mercy MANLEY, Sandra JABAS, Marek MALÍK (203 Česká republika, domácí), Ashley BLAWAS a Vincent M. JANIK.
Vydání Frontiers in Physiology, Lausanne, Frontiers, 2020, 1664-042X.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 30105 Physiology
Stát vydavatele Švýcarsko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 4.566
Kód RIV RIV/00216224:14110/20:00117278
Organizační jednotka Lékařská fakulta
Doi http://dx.doi.org/10.3389/fphys.2020.604018
UT WoS 000596357800001
Klíčová slova anglicky dive response; diving physiology; marine mammal; reflex; cardiovascular physiology; selective gas exchange hypothesis; adaptation; cardiovascular function
Štítky 14110211, rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Tereza Miškechová, učo 341652. Změněno: 5. 1. 2021 08:57.
Anotace
Previous reports suggested the existence of direct somatic motor control over heart rate (f(H)) responses during diving in some marine mammals, as the result of a cognitive and/or learning process rather than being a reflexive response. This would be beneficial for O-2 storage management, but would also allow ventilation-perfusion matching for selective gas exchange, where O-2 and CO2 can be exchanged with minimal exchange of N-2. Such a mechanism explains how air breathing marine vertebrates avoid diving related gas bubble formation during repeated dives, and how stress could interrupt this mechanism and cause excessive N-2 exchange. To investigate the conditioned response, we measured the f(H)-response before and during static breath-holds in three bottlenose dolphins (Tursiops truncatus) when shown a visual symbol to perform either a long (LONG) or short (SHORT) breath-hold, or during a spontaneous breath-hold without a symbol (NS). The average f(H) (if(Hstart)), and the rate of change in f(H) (dif(H)/dt) during the first 20 s of the breath-hold differed between breath-hold types. In addition, the minimum instantaneous f(H) (if(Hmin)), and the average instantaneous f(H) during the last 10 s (if(Hend)) also differed between breath-hold types. The dif(H)/dt was greater, and the if(Hstart), if(Hmin), and if(Hend) were lower during a LONG as compared with either a SHORT, or an NS breath-hold (P < 0.05). Even though the NS breath-hold dives were longer in duration as compared with SHORT breath-hold dives, the dif(H)/dt was greater and the if(Hstart), if(Hmin), and if(Hend) were lower during the latter (P < 0.05). In addition, when the dolphin determined the breath-hold duration (NS), the f(H) was more variable within and between individuals and trials, suggesting a conditioned capacity to adjust the f(H)-response. These results suggest that dolphins have the capacity to selectively alter the f(H)-response during diving and provide evidence for significant cardiovascular plasticity in dolphins.
VytisknoutZobrazeno: 21. 5. 2024 02:48