2020
The simulation framework of the timing-based localization for future all-sky gamma-ray observations with a fleet of CubeSats
OHNO, Masanori; Norbert WERNER; András PÁL; László MÉSZÁROS; Yuto ICHINOHE et. al.Základní údaje
Originální název
The simulation framework of the timing-based localization for future all-sky gamma-ray observations with a fleet of CubeSats
Autoři
OHNO, Masanori; Norbert WERNER; András PÁL; László MÉSZÁROS; Yuto ICHINOHE; Jakub ŘÍPA; Martin TOPINKA; Filip MÜNZ; Gabór GALGÓCZI; Yasushi FUKAZAWA; Tsunefumi MIZUNO; Hiromitsu TAKAHASHI; Nagomi UCHIDA; Kento TORIGOE; Naoyoshi HIRADE; Kengo HIROSE; Hiroto MATAKE; Kazuhiro NAKAZAWA; Syohei HISADOMI; Hirokazu ODAKA; Teruaki ENOTO; Ján HUDEC; Jakub KAPUS; Martin KOLEDA a Robert LASZLO
Vydání
Bellingham, Proc. SPIE 11454, X-Ray, Optical, and Infrared Detectors for Astronomy IX, 114541Z, od s. "114541Z-1"-"114541Z-9", 9 s. 2020
Nakladatel
Society of Photo-Optical Instrumentation Engineers (SPIE)
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10308 Astronomy
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14310/20:00117676
Organizační jednotka
Přírodovědecká fakulta
ISBN
978-1-5106-3695-8
ISSN
UT WoS
000767166800033
EID Scopus
2-s2.0-85099371895
Klíčová slova anglicky
GRBs; CubeSats; Machine-Learning
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 11. 2022 11:52, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
The timing-based localization, which utilize the triangulation principle with the different arrival time of gammaray photons, with a fleet of Cubesats is a unique and powerful solution for the future all-sky gamma-ray observation, which is a key for identification of the electromagnetic counterpart of the gravitational wave sources. The Cubesats Applied for MEasuring and Localising Transients (CAMELOT) mission is now being promoted by the Hungarian and Japanese collaboration with a basic concept of the nine Cubesats constellations in low earth orbit. The simulation framework for estimation of the localization capability has been developed including orbital parameters, an algorithm to estimate the expected observed profile of gamma-ray photons, finding the peak of the cross-correlation function, and a statistical method to find a best-fit position and its uncertainty. It is revealed that a degree-scale localization uncertainty can be achieved by the CAMELOT mission concept for bright short gamma-ray bursts, which could be covered by future large field of view ground-based telescopes. The new approach utilizing machine-learning approach is also investigated to make the procedure automated for the future large scale constellations. The trained neural network with 106 simulated light curves generated by the artificial short burst templates successfully predicts the time-delay of the real light curve and achieves a comparable performance to the cross-correlation algorithm with full automated procedures.
Návaznosti
| MUNI/I/0003/2020, interní kód MU |
|