2020
Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants
AA, Balinsky, Blackmore D, Radoslaw Antoni KYCIA a Prykarpatski AKZákladní údaje
Originální název
Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants
Autoři
AA, Balinsky, Blackmore D, Radoslaw Antoni KYCIA a Prykarpatski AK
Vydání
Entropy, Basel (Schwitzerland), MDPI AG, POSTFACH, 2020, 1099-4300
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10102 Applied mathematics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.524
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000593678300001
Klíčová slova anglicky
liquid flow; hydrodynamic Euler equations; diffeomorphism group; Lie-Poisson structure; isentropic hydrodynamic invariants; vortex invariants; charged liquid fluid dynamics; symmetry reduction
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2024 09:28, Mgr. Marie Šípková, DiS.
Anotace
V originále
We review a modern differential geometric description of fluid isentropic motion and features of it including diffeomorphism group structure, modelling the related dynamics, as well as its compatibility with the quasi-stationary thermodynamical constraints. We analyze the adiabatic liquid dynamics, within which, following the general approach, the nature of the related Poissonian structure on the fluid motion phase space as a semidirect Banach groups product, and a natural reduction of the canonical symplectic structure on its cotangent space to the classical Lie-Poisson bracket on the adjoint space to the corresponding semidirect Lie algebras product are explained in detail. We also present a modification of the Hamiltonian analysis in case of a flow governed by isothermal liquid dynamics. We study the differential-geometric structure of isentropic magneto-hydrodynamic superfluid phase space and its related motion within the Hamiltonian analysis and related invariant theory. In particular, we construct an infinite hierarchy of different kinds of integral magneto-hydrodynamic invariants, generalizing those previously constructed in the literature, and analyzing their differential-geometric origins. A charged liquid dynamics on the phase space invariant with respect to an abelian gauge group transformation is also investigated, and some generalizations of the canonical Lie-Poisson type bracket is presented.