J 2020

Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants

AA, Balinsky, Blackmore D, Radoslaw Antoni KYCIA a Prykarpatski AK

Základní údaje

Originální název

Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants

Autoři

AA, Balinsky, Blackmore D, Radoslaw Antoni KYCIA a Prykarpatski AK

Vydání

Entropy, Basel (Schwitzerland), MDPI AG, POSTFACH, 2020, 1099-4300

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10102 Applied mathematics

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.524

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000593678300001

Klíčová slova anglicky

liquid flow; hydrodynamic Euler equations; diffeomorphism group; Lie-Poisson structure; isentropic hydrodynamic invariants; vortex invariants; charged liquid fluid dynamics; symmetry reduction

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2024 09:28, Mgr. Marie Šípková, DiS.

Anotace

V originále

We review a modern differential geometric description of fluid isentropic motion and features of it including diffeomorphism group structure, modelling the related dynamics, as well as its compatibility with the quasi-stationary thermodynamical constraints. We analyze the adiabatic liquid dynamics, within which, following the general approach, the nature of the related Poissonian structure on the fluid motion phase space as a semidirect Banach groups product, and a natural reduction of the canonical symplectic structure on its cotangent space to the classical Lie-Poisson bracket on the adjoint space to the corresponding semidirect Lie algebras product are explained in detail. We also present a modification of the Hamiltonian analysis in case of a flow governed by isothermal liquid dynamics. We study the differential-geometric structure of isentropic magneto-hydrodynamic superfluid phase space and its related motion within the Hamiltonian analysis and related invariant theory. In particular, we construct an infinite hierarchy of different kinds of integral magneto-hydrodynamic invariants, generalizing those previously constructed in the literature, and analyzing their differential-geometric origins. A charged liquid dynamics on the phase space invariant with respect to an abelian gauge group transformation is also investigated, and some generalizations of the canonical Lie-Poisson type bracket is presented.